Generalized Projective Synchronization for Different Hyperchaotic Dynamical Systems

被引:5
作者
El-Dessoky, M. M. [1 ,2 ]
Saleh, E. [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
COUPLED CHAOTIC SYSTEMS; ADAPTIVE-CONTROL; FEEDBACK;
D O I
10.1155/2011/437156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Projective synchronization and generalized projective synchronization have recently been observed in the coupled hyperchaotic systems. In this paper a generalized projective synchronization technique is applied in the hyperchaotic Lorenz system and the hyperchaotic Lu. The sufficient conditions for achieving projective synchronization of two different hyperchaotic systems are derived. Numerical simulations are used to verify the effectiveness of the proposed synchronization techniques.
引用
收藏
页数:19
相关论文
共 32 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[3]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110
[4]  
Chen G., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P407, DOI 10.1142/S0218127492000392
[5]   On some controllability conditions for chaotic dynamics control [J].
Chen, GR .
CHAOS SOLITONS & FRACTALS, 1997, 8 (09) :1461-1470
[6]   Synchronization in uncertain complex networks [J].
Chen, MY ;
Zhou, DH .
CHAOS, 2006, 16 (01)
[7]   The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems [J].
Ge, Zheng-Ming ;
Yang, Cheng-Hsiung .
CHAOS SOLITONS & FRACTALS, 2008, 35 (05) :980-990
[8]   The complete, lag and anticipated synchronization of a BLDCM chaotic system [J].
Ge, Zheng-Ming ;
Lin, Guo-Hua .
CHAOS SOLITONS & FRACTALS, 2007, 34 (03) :740-764
[9]   Chaotic systems with a null conditional Lyapunov exponent under nonlinear driving [J].
GonzalezMiranda, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :R5-R8
[10]   Adaptive feedback controller for projective synchronization [J].
Hu, Manfeng ;
Xu, Zhenyuan .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) :1253-1260