On the semi-monotone operator theory and applications

被引:60
作者
Chen, YQ [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
D O I
10.1006/jmaa.1998.6245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, E is a real Banach space, A: E** x E** --> E* is a semi-monotone operator. We first study the variational inequality problem: Find u is an element of K, such that (A(u, u), v - u) greater than or equal to 0, where K subset of E** is a closed convex subset; then the operator equation A(u, u) = p*, and we also construct a degree theory for demi-continuous semi-monotone operators in reflexive Banach spaces. (C) 1999 Academic Press.
引用
收藏
页码:177 / 192
页数:16
相关论文
共 18 条
[1]   Note on the topological degree of the subdifferential of a lower semi-continuous convex function [J].
Aizicovici, S ;
Chen, YQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (10) :2905-2908
[2]  
Barbu V., 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces
[3]  
Browder F. E., 1976, P SYMP MATH AM MATH
[5]  
BROWN P, 1983, REPRESENTATIONS, V1, P1
[6]   VARIATIONAL-INEQUALITIES FOR MONOTONE-OPERATORS IN NONREFLEXIVE BANACH-SPACES [J].
CHANG, SS ;
LEE, BS ;
CHEN, YQ .
APPLIED MATHEMATICS LETTERS, 1995, 8 (06) :29-34
[7]  
Chen YQ, 1996, NONLINEAR ANAL-THEOR, V27, P1125
[8]  
Chipot M., 1984, VARIATIONAL INEQUALI
[9]  
Deimling K, 1984, NONLINEAR FUNCTIONAL
[10]  
DUVAUT G, 1970, INEQUATIONS MECANIQU