Kinetic analysis of amino acid radicals formed in H2O2-driven CuI LPMO reoxidation implicates dominant homolytic reactivity

被引:89
作者
Jones, Stephen M. [1 ]
Transue, Wesley J. [1 ]
Meier, Katlyn K. [1 ]
Kelemen, Bradley [2 ]
Solomon, Edward I. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] DuPont Nutr & Biosci, Palo Alto, CA 94304 USA
基金
美国国家卫生研究院;
关键词
tryptophan radical; tyrosine radical; kinetics; biofuels; LYTIC POLYSACCHARIDE MONOOXYGENASES; HYDROGEN-PEROXIDE FORMATION; ACTIVATED BLEOMYCIN; MECHANISM; DEGRADATION; CLEAVAGE; CHITIN; CELLULOSE; EPR; TRYPTOPHAN;
D O I
10.1073/pnas.1922499117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) have been proposed to react with both O-2 and H2O2 as cosubstrates. In this study, the H2O2 reaction with reduced Hypocrea jecorina LPMO9A (Cu-I-HjLPMO9A) is demonstrated to be 1,000-fold faster than the O-2 reaction while producing the same oxidized oligosaccharide products. Analysis of the reactivity in the absence of polysaccharide substrate by stopped-flow absorption and rapid freeze-quench (RFQ) electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) yields two intermediates corresponding to neutral tyrosyl and tryptophanyl radicals that are formed along minor reaction pathways. The dominant reaction pathway is characterized by RFQ EPR and kinetic modeling to directly produce Cu-II-HjLPMO9A and indicates homolytic O-O cleavage. Both optical intermediates exhibit magnetic exchange coupling with the Cu-II sites reflecting facile electron transfer (ET) pathways, which may be protective against uncoupled turnover or provide an ET pathway to the active site with substrate bound. The reactivities of nonnative organic peroxide cosubstrates effectively exclude the possibility of a ping-pong mechanism.
引用
收藏
页码:11916 / 11922
页数:7
相关论文
共 42 条
[1]   A reassessment of the bond dissociation energies of peroxides. An ab initio study [J].
Bach, RD ;
Ayala, PY ;
Schlegel, HB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (50) :12758-12765
[2]   Cellulose Degradation by Polysaccharide Monooxygenases [J].
Beeson, William T. ;
Vu, Van V. ;
Span, Elise A. ;
Phillips, Christopher M. ;
Marletta, Michael A. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 84, 2015, 84 :923-946
[3]  
Bencini A., 1990, ELECT PARAMAGNETIC R
[4]  
Bensasson R. V., 1983, Flash Photolysis and Pulse Radiolysis, P93
[5]   Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations [J].
Bertini, Luca ;
Breglia, Raffaella ;
Lambrughi, Matteo ;
Fantucci, Piercarlo ;
De Gioia, Luca ;
Borsari, Marco ;
Sola, Marco ;
Bortolotti, Carlo Augusto ;
Bruschi, Maurizio .
INORGANIC CHEMISTRY, 2018, 57 (01) :86-97
[6]  
Bissaro B, 2019, BIORXIV, DOI [10.1101/541292, DOI 10.1101/541292]
[7]   Molecular mechanism of the chitinolytic peroxygenase reaction [J].
Bissaro, Bastien ;
Streit, Bennett ;
Isaksen, Ingvild ;
Eijsink, Vincent G. H. ;
Beckham, Gregg T. ;
DuBois, Jennifer L. ;
Rohr, Asmund K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (03) :1504-1513
[8]  
Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/NCHEMBIO.2470, 10.1038/nchembio.2470]
[9]   Tryptophan and tyrosine radicals in ribonucleotide reductase:: A comparative high-field EPR study at 94 GHz [J].
Bleifuss, G ;
Kolberg, M ;
Pötsch, S ;
Hofbauer, W ;
Bittl, R ;
Lubitz, W ;
Gräslund, A ;
Lassmann, G ;
Lendzian, F .
BIOCHEMISTRY, 2001, 40 (50) :15362-15368
[10]   Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity [J].
Borisova, Anna S. ;
Isaksen, Trine ;
Dimarogona, Maria ;
Kognole, Abhishek A. ;
Mathiesen, Geir ;
Varnai, Aniko ;
Rohr, Asmund K. ;
Payne, Christina M. ;
Sorlie, Morten ;
Sandgren, Mats ;
Eijsink, Vincent G. H. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (38) :22955-22969