Quasi-Nonexpansive Mappings Involving Pseudomonotone Bifunctions on Convex Sets

被引:0
作者
Tran Viet Anh [1 ]
Le Dung Muu [2 ,3 ]
机构
[1] Posts & Telecommun Inst Technol, Dept Sci Fundamentals, Hanoi, Vietnam
[2] Thang Long Univ, TIMAS, Hanoi, Vietnam
[3] VAST, Inst Math, Hanoi, Vietnam
关键词
Convexity; pseudomonotonicity; quasi-nonexpansive mapping; fixed point; equilibria; KY FAN INEQUALITIES; VARIATIONAL-INEQUALITIES; CONVERGENCE; ALGORITHMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present new quasi-nonexpansive mappings involving pseudomonotone bifunctions defined on convex sets in real Hilbert space. We investigate some properties concerning their fixed point sets. Some applications to equilibrium problems are discussed.
引用
收藏
页码:1105 / 1119
页数:15
相关论文
共 20 条
[1]  
AGARWAL R.P., 2000, Fixed Point Theory for Lipschitzian-type Mappings with Applications
[2]  
[Anonymous], 1970, CONVEX ANAL
[3]   Existence and solution methods for equilibria [J].
Bigi, Giancarlo ;
Castellani, Marco ;
Pappalardo, Massimo ;
Passacantando, Mauro .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 227 (01) :1-11
[4]  
Blum E., 1994, Math. student, V63, P123
[5]   Iterative Methods for Fixed Point Problems in Hilbert Spaces Preface [J].
Cegielski, Andrzej .
ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 :IX-+
[6]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[7]   Convergence of Ishikawa iterates of quasi-nonexpansive mappings [J].
Ghosh, MK ;
Debnath, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 207 (01) :96-103
[8]  
Ioffe AD., 1979, Studies in Mathematics and its Applications
[9]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150
[10]  
Iusem A. N., 1992, OPTIMIZATION, V42, P309