Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers

被引:162
作者
Fan, Yimin [1 ]
Fukuzumi, Hayaka [1 ]
Saito, Tsuguyuki [1 ]
Isogai, Akira [1 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Bunkyo Ku, Tokyo 1138657, Japan
基金
日本学术振兴会;
关键词
Chitin; Film nanowhisker; Nanofiber; AFM; Oxygen permeability; TEMPO-MEDIATED OXIDATION; ALPHA-CHITIN; BETA-CHITIN; NANOFIBERS; CELLULOSE; NANOCOMPOSITES; DIFFRACTION; FABRICATION; WHISKERS;
D O I
10.1016/j.ijbiomac.2011.09.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Water dispersions of TEMPO-oxidized alpha-chitin nanowhisker (TOChN), partially deacetylated alpha-chitin nanowhisker/nanofiber mixture (DEChN), HCl-hydrolyzed chitin nanowhisker (HHChN) and squid-pen beta-chitin nanofiber (SQChN) were prepared, and the properties of nano-dispersions and their cast films were characterized between the four chitin nano-samples. Because SQChN has the highest aspect ratio, its 0.1% dispersion had the highest shear stress and viscosity at the same shear rate in the four chitin nano-samples, and showed gel-like behavior in the whole shear rate range from 10(-3) to 10(3) s(-1). AFM images of the self-standing films showed that film surfaces consisted of characteristic chitin nano-elements with different morphologies and degrees of orientation between the four chitin samples, whereas all chitin nanowhisker/nanofiber films had similar thermal degradation points at similar to 200 degrees C. The DEChN film had the highest tensile strength of similar to 140 MPa, elongation at break of similar to 10% and light-transmittance of 87% at 400 nm. In contrast, the SQChN film had the lowest tensile strength, Young's modulus and light-transmittance. All chitin nanowhisker/nanofiber films had similar oxygen permeabilities of similar to 1 mL mu m m(-2) day(-1) kPa(-1), which was clearly lower than that (184 mL mu m m(-2) day(-1) kPa(-1)) of a poly(lactic acid) film. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 28 条
[1]   Preparation of chitin nanofibers from squid pen β-chitin by simple mechanical treatment under acid conditions [J].
Fan, Yimin ;
Saito, Tsuguyuki ;
Isogai, Akira .
BIOMACROMOLECULES, 2008, 9 (07) :1919-1923
[2]   Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization [J].
Fan, Yimin ;
Saito, Tsuguyuki ;
Isogai, Akira .
CARBOHYDRATE POLYMERS, 2010, 79 (04) :1046-1051
[3]   TEMPO-mediated oxidation of β-chitin to prepare individual nanofibrils [J].
Fan, Yimin ;
Saito, Tsuguyuki ;
Isogai, Akira .
CARBOHYDRATE POLYMERS, 2009, 77 (04) :832-838
[4]   Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin [J].
Fan, Yirnin ;
Saito, Tsuguyuki ;
Isogai, Akira .
BIOMACROMOLECULES, 2008, 9 (01) :192-198
[5]  
Faroonahmed S.K., 1998, FUNCTIONAL PACKAGING, V206, P44
[6]   Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups [J].
Fujisawa, Shuji ;
Okita, Yusuke ;
Fukuzumi, Hayaka ;
Saito, Tsuguyuki ;
Isogai, Akira .
CARBOHYDRATE POLYMERS, 2011, 84 (01) :579-583
[7]   Thermal stabilization of TEMPO-oxidized cellulose [J].
Fukuzumi, Hayaka ;
Saito, Tsuguyuki ;
Okita, Yusuke ;
Isogai, Akira .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (09) :1502-1508
[8]   Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation [J].
Fukuzumi, Hayaka ;
Saito, Tsuguyuki ;
Wata, Tadahisa ;
Kumamoto, Yoshiaki ;
Isogai, Akira .
BIOMACROMOLECULES, 2009, 10 (01) :162-165
[9]   α-Chitin nanocrystals prepared from shrimp shells and their specific surface area measurement [J].
Goodrich, Jacob D. ;
Winter, William T. .
BIOMACROMOLECULES, 2007, 8 (01) :252-257
[10]   Preparation of Chitin Nanofibers with a Uniform Width as α-Chitin from Crab Shells [J].
Ifuku, Shinsuke ;
Nogi, Masaya ;
Abe, Kentaro ;
Yoshioka, Masafumi ;
Morimoto, Minoru ;
Saimoto, Hiroyuki ;
Yano, Hiroyuki .
BIOMACROMOLECULES, 2009, 10 (06) :1584-1588