Required, achievable and target TBR for the European DEMO

被引:42
作者
Fischer, U. [1 ]
Boccaccini, L., V [1 ]
Cismondi, F. [2 ]
Coleman, M. [3 ,4 ]
Day, C. [1 ]
Hoerstensmeyer, Y. [1 ]
Moro, F. [5 ]
Pereslavtsev, P. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[3] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
[4] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[5] ENEA, Fus & Technol Nucl Safety & Secur Dept, Via E Fermi 45, Frascati, Italy
关键词
DEMO; Neutronics; Tritium; Fuel cycle; FUEL-CYCLE; PERFORMANCE; NEUTRONICS;
D O I
10.1016/j.fusengdes.2020.111553
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This work presents an up-to-date assessment of the TBR (Tritium Breeding Ratio) requirements for the European DEMO which is under development in the EUROfusion PPPT (Power Plant Physics and Technology) programme. Previous requirements were updated in accordance with the recent advances in the fuel cycle concept, the progress achieved with the DEMO design, and the additional requirement to generate the start-up tritium inventory for a follow-up fusion power reactor. The assessment results in a requirement of TBR >= 1.05 which is needed to provide the amount of tritium to the fuel cycle required to attain self-sufficiency. The TBR design target, which includes margins for calculation uncertainties and incomplete models, was set to TBR >= 1.15. The attainability of this design target is to be demonstrated with a neutronics calculation using an appropriate simulation model, without considering auxiliary systems, limiters, extra ports, etc. With the latest blanket design versions, this requirement can be fulfilled by the driver blanket candidates considered for DEMO, the HCPB (Helium Cooled Pebble Bed) and the WCLL (Water Cooled Lithium Lead) breeding blankets.
引用
收藏
页数:6
相关论文
共 31 条
[1]  
Aubert J., 2018, HCLL DESIGN REPORT 2
[2]   Status of the EU DEMO HCLL breeding blanket design development [J].
Aubert, Julien ;
Aiello, Giacomo ;
Arena, Pietro ;
Barrett, Tom ;
Boccaccini, Lorenzo Virgilio ;
Bongiovi, Gaetano ;
Boullon, Remi ;
Cismondi, Fabio ;
Critescu, Ion ;
Domalapally, Phani Kumar ;
Forest, Laurent ;
Jaboulay, Jean-Charles ;
Kiss, Bela ;
Morin, Alexandre ;
Peyraud, Justine ;
Porempovics, Gabor ;
Utili, Marco ;
Vala, Ladislav .
FUSION ENGINEERING AND DESIGN, 2018, 136 :1428-1432
[3]  
Bachmann C., FUSION ENG DESIGN
[4]   Neutronics experiments for uncertainty assessment of tritium breeding in HCPB and HCLL blanket mock-ups irradiated with 14 MeV neutrons [J].
Batistoni, P. ;
Angelone, M. ;
Fischer, U. ;
Klix, A. ;
Kodeli, I. ;
Leichtle, D. ;
Pillon, M. ;
Pohorecki, W. ;
Villari, R. .
NUCLEAR FUSION, 2012, 52 (08)
[5]   DEMO tritium fuel cycle: performance, parameter explorations, and design space constraints [J].
Coleman, M. ;
Hoerstensmeyer, Y. ;
Cismondi, F. .
FUSION ENGINEERING AND DESIGN, 2019, 141 :79-90
[6]   The Direct Internal Recycling concept to simplify the fuel cycle of a fusion power plant [J].
Day, Christian ;
Giegerich, Thomas .
FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) :616-620
[7]   Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project [J].
Del Nevo, A. ;
Arena, P. ;
Caruso, G. ;
Chiovaro, P. ;
Di Maio, P. A. ;
Eboli, M. ;
Edemetti, F. ;
Forgione, N. ;
Forte, R. ;
Froio, A. ;
Giannetti, F. ;
Di Gironimo, G. ;
Jiang, K. ;
Liu, S. ;
Moro, F. ;
Mozzillo, R. ;
Savoldi, L. ;
Tarallo, A. ;
Tarantino, M. ;
Tassone, A. ;
Utili, M. ;
Villari, R. ;
Zanino, R. ;
Martelli, E. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :1805-1809
[8]  
Del Nevo A., 2018, WCLL DESIGN REPORT 2
[9]  
Del Nevo A., 2020, EFDAD2MXULG
[10]  
Donne A.J.H., 2018, P PRESENTATION 2018