Lotka-Volterra equations in three dimensions satisfying the Kowalevski-Painlev, property

被引:13
作者
Constandinides, Kyriacos [1 ]
Damianou, Pantelis A. [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Lotka-Volterra equations; Kowalevski exponents; Painleve analysis; ORDINARY DIFFERENTIAL-EQUATIONS; LINEAR EVOLUTION-EQUATIONS; HAMILTONIAN-STRUCTURE; HOMOGENEOUS SYSTEMS; ASYMPTOTIC METHOD; 1ST INTEGRALS; P-TYPE; INTEGRABILITY; CONNECTION; RESONANCES;
D O I
10.1134/S1560354711030075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine a class of Lotka-Volterra equations in three dimensions which satisfy the Kowalevski-Painlev, property. We restrict our attention to Lotka-Volterra systems defined by a skew symmetric matrix. We obtain a complete classification of such systems. The classification is obtained using Painlev, analysis and more specifically by the use of Kowalevski exponents. The imposition of certain integrality conditions on the Kowalevski exponents gives necessary conditions. We also show that the conditions are sufficient.
引用
收藏
页码:311 / 329
页数:19
相关论文
共 22 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1006-1015
[2]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[3]   KOWALEWSKI ASYMPTOTIC METHOD, KAC-MOODY LIE-ALGEBRAS AND REGULARIZATION [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (01) :83-106
[4]  
ADLER M, 2004, ERGEB MATH GRENZGEB, V47
[5]   An interpretation of the presence of both positive and negative nongeneric resonances in the singularity analysis [J].
Andriopoulos, K. ;
Leach, P. G. L. .
PHYSICS LETTERS A, 2006, 359 (03) :199-203
[6]  
[Anonymous], REGUL CHAOTIC DYN
[7]  
Bountis T. C., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P217, DOI 10.1142/S0218127492000239
[8]   ON THE INTEGRABILITY OF SOME GENERALIZED LOTKA-VOLTERRA SYSTEMS [J].
BOUNTIS, TC ;
BIER, M ;
HIJMANS, J .
PHYSICS LETTERS A, 1983, 97 (1-2) :11-14
[9]   Darboux integrability for 3D Lotka-Volterra systems [J].
Cairó, L ;
Llibre, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2395-2406
[10]   MULTI-HAMILTONIAN STRUCTURE OF LOTKA-VOLTERRA AND QUANTUM VOLTERRA MODELS [J].
CRONSTROM, C ;
NOGA, M .
NUCLEAR PHYSICS B, 1995, 445 (2-3) :501-515