Kinship, dispersal and hantavirus transmission in bank and common voles

被引:40
作者
Deter, J. [1 ]
Chaval, Y. [1 ]
Galan, M. [1 ]
Gauffre, B. [1 ]
Morand, S. [2 ]
Henttonen, H. [3 ]
Laakkonen, J. [3 ,4 ]
Voutilainen, L. [3 ]
Charbonnel, N. [1 ]
Cosson, J. -F. [1 ]
机构
[1] INRA, EFPA, CBGP, F-34988 Montferrier Sur Lez, France
[2] Univ Montpellier 2, CNRS, Inst Sci Evolut, CC064, F-34095 Montpellier 05, France
[3] Finnish Forest Res Inst, Vantaa Res Unit, Vantaa 01301, Finland
[4] Univ Helsinki, Dept Virol, Haartman Inst, Helsinki 00014, Finland
关键词
D O I
10.1007/s00705-007-0005-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hantaviruses are among the main emerging infectious agents in Europe. Their mode of transmission in natura is still not well known. In particular, social features and behaviours could be crucial for understanding the persistence and the spread of hantaviruses in rodent populations. Here, we investigated the importance of kinclustering and dispersal in hantavirus transmission by combining a fine-scale spatiotemporal survey (4 km(2)) and a population genetics approach. Two specific host-hantavirus systems were identified and monitored: the bank vole Myodes, earlier Clethrionomys glareolus--Puumala virus and the common vole Microtus arvalis-Tula virus. Sex, age and landscape characteristics significantly influenced the spatial distribution of infections in voles. The absence of temporal stability in the spatial distributions of viruses suggested that dispersal is likely to play a role in virus propagation. Analysing vole kinship from microsatellite markers, we found that infected voles were more closely related to each other than non-infected ones. Winter kin-clustering, shared colonies within matrilineages or delayed dispersal could explain this pattern. These two last results hold, whatever the host-hantavirus system considered. This supports the roles of relatedness and dispersal as general features for hantavirus transmission.
引用
收藏
页码:435 / 444
页数:10
相关论文
共 71 条
[11]  
Burnham K. P., 1998, Model Selection and Inference, DOI DOI 10.1007/978-1-4757-2917-7_3
[12]   Fluctuating rodent populations and risk to humans from rodent-borne zoonoses [J].
Davis, S ;
Calvet, E ;
Leirs, H .
VECTOR-BORNE AND ZOONOTIC DISEASES, 2005, 5 (04) :305-314
[13]  
DETER J, 2007, IN PRESS INF GENET E
[14]   Movement patterns of male common voles (Microtus arvalis) in a network of Y junctions:: role of distant visual cues and scent marks [J].
Dobly, A .
CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE, 2001, 79 (12) :2228-2238
[15]   PROTECTION AGAINST HANTAVIRUS INFECTION BY DAMS IMMUNITY TRANSFERRED VERTICALLY TO NEONATES [J].
DOHMAE, K ;
NISHIMUNE, Y .
ARCHIVES OF VIROLOGY, 1995, 140 (01) :165-172
[16]   Spatial and temporal dynamics of Puumala hantavirus infection in red bank vole (Clethrionomys glareolus) populations in Belgium [J].
Escutenaire, S ;
Chalon, P ;
Verhagen, R ;
Heyman, P ;
Thomas, I ;
Karelle-Bui, L ;
Avsic-Zupanc, T ;
Lundkvist, Å ;
Plyusnin, A ;
Pastoret, PP .
VIRUS RESEARCH, 2000, 67 (01) :91-107
[17]   Behavioral, physiologic, and habitat influences on the dynamics of Puumala virus infection in bank voles (Clethrionomys glareolus) [J].
Escutenaire, S ;
Chalon, P ;
De Jaegere, F ;
Karelle-Bui, L ;
Mees, G ;
Brochier, B ;
Rozenfeld, F ;
Pastoret, PP .
EMERGING INFECTIOUS DISEASES, 2002, 8 (09) :930-936
[18]   Polymorphic microsatellite loci and PCR multiplexing in the common vole, Microtus arvalis [J].
Gauffre, B. ;
Galan, M. ;
Bretagnolle, V. ;
Cosson, J. F. .
MOLECULAR ECOLOGY NOTES, 2007, 7 (05) :830-832
[19]   ESTIMATION OF WATER VOLE ABUNDANCE BY USING SURFACE INDEXES [J].
GIRAUDOUX, P ;
PRADIER, B ;
DELATTRE, P ;
DEBLAY, S ;
SALVI, D ;
DEFAUT, R .
ACTA THERIOLOGICA, 1995, 40 (01) :77-96
[20]   Isolation and characterization of microsatellite loci from Apodemus flavicollis (Rodentia, Muridae) and Clethrionomys glareolus (Rodentia, Cricetidae) [J].
Gockel, J ;
Harr, B ;
Schlotterer, C ;
Arnold, W ;
Gerlach, G ;
Tautz, D .
MOLECULAR ECOLOGY, 1997, 6 (06) :597-599