Clustering gene expression series with prior knowledge

被引:0
作者
Bréhélin, L [1 ]
机构
[1] Lab Informat Robot & Microelect Montpellier, F-34392 Montpellier, France
来源
ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS | 2005年 / 3692卷
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microarrays allow monitoring of thousands of genes over time periods. Recently, gene clustering approaches specially adapted to deal with the time dependences of these data have been proposed. According to these methods, we investigate here how to use prior knowledge about the approximate profile of some classes to improve the classification result. We propose a Bayesian approach to this problem. A mixture model is used to describe and classify the data. The parameters of this model are constrained by a prior distribution defined with a new type of model that can express both our prior knowledge about the profile of classes of interest and the temporal nature of the data. Then, an EM algorithm estimates the parameters of the mixture model by maximizing its posterior probability.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 15 条
  • [1] Continuous representations of time-series gene expression data
    Bar-Joseph, Z
    Gerber, GK
    Gifford, DK
    Jaakkola, TS
    Simon, I
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) : 341 - 356
  • [2] SOME RELATIONS AMONG STOCHASTIC FINITE STATE NETWORKS USED IN AUTOMATIC SPEECH RECOGNITION
    CASACUBERTA, F
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) : 691 - 695
  • [3] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [4] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868
  • [5] Hart, 2006, PATTERN CLASSIFICATI
  • [6] Large-scale clustering of cDNA-fingerprinting data
    Herwig, R
    Poustka, AJ
    Müller, C
    Bull, C
    Lehrach, H
    O'Brien, J
    [J]. GENOME RESEARCH, 1999, 9 (11) : 1093 - 1105
  • [7] The transcriptional program in the response of human fibroblasts to serum
    Iyer, VR
    Eisen, MB
    Ross, DT
    Schuler, G
    Moore, T
    Lee, JCF
    Trent, JM
    Staudt, LM
    Hudson, J
    Boguski, MS
    Lashkari, D
    Shalon, D
    Botstein, D
    Brown, PO
    [J]. SCIENCE, 1999, 283 (5398) : 83 - 87
  • [8] Kohonen T., 1997, Self-organizing Maps, V2nd ed.
  • [9] LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489
  • [10] MCLACHLAN G., 2000, WILEY SER PROB STAT, DOI 10.1002/0471721182