Ground-level ozone influenced by circadian control of isoprene emissions

被引:0
作者
Hewitt, C. N. [1 ]
Ashworth, K. [1 ]
Boynard, A. [2 ]
Guenther, A. [2 ]
Langford, B. [1 ]
MacKenzie, A. R. [1 ]
Misztal, P. K. [3 ]
Nemitz, E. [3 ]
Owen, S. M. [3 ]
Possell, M. [1 ]
Pugh, T. A. M. [1 ]
Ryan, A. C. [1 ]
Wild, O. [1 ]
机构
[1] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[2] Natl Ctr Atmospher Res, Boulder, CO 80302 USA
[3] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland
基金
美国国家科学基金会; 英国自然环境研究理事会;
关键词
VOLATILE ORGANIC-COMPOUNDS; TROPICAL RAIN-FOREST; SURFACE OZONE; CHEMISTRY; MODEL; HYDROCARBONS; FLUXES; URBAN;
D O I
10.1038/NGEO1271
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The volatile organic compound isoprene is produced by many plant species, and provides protection against biotic and abiotic stresses(1). Globally, isoprene emissions from plants are estimated to far exceed anthropogenic emissions of volatile organic compounds(2). Once in the atmosphere, isoprene reacts rapidly with hydroxyl radicals(3) to form peroxy radicals, which can react with nitrogen oxides to form ground-level ozone(4). Here, we use canopy-scale measurements of isoprene fluxes from two tropical ecosystems in Malaysia-a rainforest and an oil palm plantation-and three models of atmospheric chemistry to explore the effects of isoprene fluxes on ground-level ozone. We show that isoprene emissions in these ecosystems are under circadian control on the canopy scale, particularly in the oil palm plantation. As a result, these ecosystems emit less isoprene than present emissions models predict. Using local-, regional- and global-scale models of atmospheric chemistry and transport, we show that accounting for circadian control of isoprene emissions brings model predictions of ground-level ozone into better agreement with measurements, especially in isoprene-sensitive regions of the world.
引用
收藏
页码:671 / 674
页数:4
相关论文
共 26 条
[1]   An isoprene mechanism intercomparison [J].
Archibald, A. T. ;
Jenkin, M. E. ;
Shallcross, D. E. .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (40) :5356-5364
[2]   The application of data from photochemical assessment monitoring stations to the observation-based model [J].
Cardelino, CA ;
Chameides, WL .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (12-14) :2325-2332
[3]   THE ROLE OF BIOGENIC HYDROCARBONS IN URBAN PHOTOCHEMICAL SMOG - ATLANTA AS A CASE-STUDY [J].
CHAMEIDES, WL ;
LINDSAY, RW ;
RICHARDSON, J ;
KIANG, CS .
SCIENCE, 1988, 241 (4872) :1473-1475
[4]   EMISSIONS OF VOLATILE ORGANIC COMPOUNDS FROM VEGETATION AND THE IMPLICATIONS FOR ATMOSPHERIC CHEMISTRY [J].
Fehsenfeld, Fred ;
Calvert, Jack ;
Fall, Ray ;
Goldan, Paul ;
Guenther, Alex ;
Hewitt, C. ;
Lamb, Brian ;
Liu, Shaw ;
Trainer, Michael ;
Westberg, Hal ;
Zimmerman, Pat .
GLOBAL BIOGEOCHEMICAL CYCLES, 1992, 6 (04) :389-430
[5]   Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States [J].
Fiore, AM ;
Horowitz, LW ;
Purves, DW ;
Levy, H ;
Evans, MJ ;
Wang, YX ;
Li, QB ;
Yantosca, RM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D12) :1-13
[6]   Fully coupled "online" chemistry within the WRF model [J].
Grell, GA ;
Peckham, SE ;
Schmitz, R ;
McKeen, SA ;
Frost, G ;
Skamarock, WC ;
Eder, B .
ATMOSPHERIC ENVIRONMENT, 2005, 39 (37) :6957-6975
[7]   A GLOBAL-MODEL OF NATURAL VOLATILE ORGANIC-COMPOUND EMISSIONS [J].
GUENTHER, A ;
HEWITT, CN ;
ERICKSON, D ;
FALL, R ;
GERON, C ;
GRAEDEL, T ;
HARLEY, P ;
KLINGER, L ;
LERDAU, M ;
MCKAY, WA ;
PIERCE, T ;
SCHOLES, B ;
STEINBRECHER, R ;
TALLAMRAJU, R ;
TAYLOR, J ;
ZIMMERMAN, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D5) :8873-8892
[8]   Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) [J].
Guenther, A. ;
Karl, T. ;
Harley, P. ;
Wiedinmyer, C. ;
Palmer, P. I. ;
Geron, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3181-3210
[9]   Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools [J].
Hewitt, C. N. ;
Lee, J. D. ;
MacKenzie, A. R. ;
Barkley, M. P. ;
Carslaw, N. ;
Carver, G. D. ;
Chappell, N. A. ;
Coe, H. ;
Collier, C. ;
Commane, R. ;
Davies, F. ;
Davison, B. ;
Di Carlo, P. ;
Di Marco, C. F. ;
Dorsey, J. R. ;
Edwards, P. M. ;
Evans, M. J. ;
Fowler, D. ;
Furneaux, K. L. ;
Gallagher, M. ;
Guenther, A. ;
Heard, D. E. ;
Helfter, C. ;
Hopkins, J. ;
Ingham, T. ;
Irwin, M. ;
Jones, C. ;
Karunaharan, A. ;
Langford, B. ;
Lewis, A. C. ;
Lim, S. F. ;
MacDonald, S. M. ;
Mahajan, A. S. ;
Malpass, S. ;
McFiggans, G. ;
Mills, G. ;
Misztal, P. ;
Moller, S. ;
Monks, P. S. ;
Nemitz, E. ;
Nicolas-Perea, V. ;
Oetjen, H. ;
Oram, D. E. ;
Palmer, P. I. ;
Phillips, G. J. ;
Pike, R. ;
Plane, J. M. C. ;
Pugh, T. ;
Pyle, J. A. ;
Reeves, C. E. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (01) :169-199
[10]   Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution [J].
Hewitt, C. N. ;
MacKenzie, A. R. ;
Di Carlo, P. ;
Di Marco, C. F. ;
Dorsey, J. R. ;
Evans, M. ;
Fowler, D. ;
Gallagher, M. W. ;
Hopkins, J. R. ;
Jones, C. E. ;
Langford, B. ;
Lee, J. D. ;
Lewis, A. C. ;
Lim, S. F. ;
McQuaid, J. ;
Misztal, P. ;
Moller, S. J. ;
Monks, P. S. ;
Nemitz, E. ;
Oram, D. E. ;
Owen, S. M. ;
Phillips, G. J. ;
Pugh, T. A. M. ;
Pyle, J. A. ;
Reeves, C. E. ;
Ryder, J. ;
Siong, J. ;
Skiba, U. ;
Stewart, D. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (44) :18447-18451