A Neural Network Model for Predicting Treatment Response of Antidepressant in Patients with Major Depressive Disorder

被引:0
|
作者
Chang, Hui Hua [1 ]
Chen, Po See [2 ]
Giacomini, Kathleen M. [1 ]
机构
[1] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[2] Natl Cheng Kung Univ & Hosp, Dept Psychiat, Tainan, Taiwan
关键词
major depressive disorder; artificial neural network; antidepressant; treatment response;
D O I
暂无
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
903
引用
收藏
页码:286S / 286S
页数:1
相关论文
共 50 条
  • [1] Neural Correlates of Antidepressant Treatment Response in Adolescents with Major Depressive Disorder
    Cullen, Kathryn R.
    Klimes-Dougan, Bonnie
    Dung Pham Vu
    Schreiner, Melinda Westlund
    Mueller, Bryon A.
    Eberly, Lynn E.
    Camchong, Jazmin
    Westervelt, Ana
    Lim, Kelvin O.
    JOURNAL OF CHILD AND ADOLESCENT PSYCHOPHARMACOLOGY, 2016, 26 (08) : 705 - 712
  • [2] Inflammatory cytokines, cognition, and response to antidepressant treatment in patients with major depressive disorder
    Zhou, Qi
    Lv, Xiaozhen
    Zhou, Shuzhe
    Liu, Qi
    Tian, Hongjun
    Zhang, Kerang
    Wei, Jing
    Wang, Gang
    Chen, Qiaoling
    Zhu, Gang
    Wang, Xueyi
    An, Cuixia
    Zhang, Nan
    Huang, Yu
    Si, Tianmei
    Yu, Xin
    Shi, Chuan
    PSYCHIATRY RESEARCH, 2021, 305
  • [3] Machine learning, pharmacogenomics, and clinical psychiatry: predicting antidepressant response in patients with major depressive disorder
    Bobo, William, V
    Van Ommeren, Bailey
    Athreya, Arjun P.
    EXPERT REVIEW OF CLINICAL PHARMACOLOGY, 2022, 15 (08) : 927 - 944
  • [4] Changes in insulin resistance following antidepressant treatment mediate response in major depressive disorder
    Rashidian, Houman
    Subramaniapillai, Mehala
    Park, Caroline
    Lipsitz, Orly
    Zuckerman, Hannah
    Cao, Bing
    Lee, Yena
    Gill, Hartej
    Rodrigues, Roger Nelson
    Di Vincenzo, Joshua D.
    Iacobucci, Michelle
    Jaberi, Saja
    Rosenblat, Joshua D.
    McIntyre, Roger S.
    Mansur, Rodrigo B.
    JOURNAL OF PSYCHOPHARMACOLOGY, 2023, 37 (03) : 313 - 317
  • [5] ARPNet: Antidepressant Response Prediction Network for Major Depressive Disorder
    Chang, Buru
    Choi, Yonghwa
    Jeon, Minji
    Lee, Junhyun
    Han, Kyu-Man
    Kim, Aram
    Ham, Byung-Joo
    Kang, Jaewoo
    GENES, 2019, 10 (11)
  • [6] Neural Predictors of Antidepressant Treatment Response to Quetiapine XR and Citalopram in Major Depressive Disorder
    Burgess, Ashley
    White, Richard
    Cortese, Fil
    Goodyear, Bradley
    Panicker, Aaron
    Karnes, Amanda
    Roy, Kamalika
    Diwadkar, Vaibhav A.
    Ramasubbu, Raj
    BIOLOGICAL PSYCHIATRY, 2013, 73 (09) : 60S - 60S
  • [7] Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder
    Kang, Seung-Gul
    Cho, Seo-Eun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (06)
  • [8] Alterations in the brainstem volume of patients with major depressive disorder and their relationship with antidepressant treatment
    Han, Kyu-Man
    Kim, Daseul
    Sim, Youngbo
    Kang, June
    Kim, Aram
    Won, Eunsoo
    Tae, Woo-Suk
    Ham, Byung-Joo
    JOURNAL OF AFFECTIVE DISORDERS, 2017, 208 : 68 - 75
  • [9] Resting State Amygdala Functional Connectivity and Antidepressant Treatment Response in Major Depressive Disorder
    Okada, Go
    Okamoto, Yasumasa
    Takamura, Masahiro
    Toki, Shigeru
    Yamamoto, Tetsuya
    Yamawaki, Shigeto
    NEUROPSYCHOPHARMACOLOGY, 2014, 39 : S241 - S241
  • [10] Copy number variants and therapeutic response to antidepressant medication in major depressive disorder
    K E Tansey
    J J H Rucker
    D H Kavanagh
    M Guipponi
    N Perroud
    G Bondolfi
    E Domenici
    D M Evans
    J Hauser
    N Henigsberg
    B Jerman
    W Maier
    O Mors
    M O'Donovan
    T J Peters
    A Placentino
    M Rietschel
    D Souery
    K J Aitchison
    I Craig
    A Farmer
    J R Wendland
    A Malafosse
    G Lewis
    S Kapur
    P McGuffin
    R Uher
    The Pharmacogenomics Journal, 2014, 14 : 395 - 399