Road damage detection algorithm for improved YOLOv5

被引:116
作者
Guo, Gege [1 ]
Zhang, Zhenyu [2 ,3 ]
机构
[1] Xinjiang Univ, Coll Software, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830017, Peoples R China
[3] Xinjiang Univ, Key Lab Multilingual Informat Technol Xinjiang Uy, Urumqi 830017, Peoples R China
关键词
D O I
10.1038/s41598-022-19674-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Road damage detection is an important task to ensure road safety and realize the timely repair of road damage. The previous manual detection methods are low in efficiency and high in cost. To solve this problem, an improved YOLOv5 road damage detection algorithm, MN-YOLOv5, was proposed. We optimized the YOLOv5s model and chose a new backbone feature extraction network MobileNetV3 to replace the basic network of YOLOv5, which greatly reduced the number of parameters and GFLOPs of the model, and reduced the size of the model. At the same time, the coordinate attention lightweight attention module is introduced to help the network locate the target more accurately and improve the target detection accuracy. The KMeans clustering algorithm is used to filter the prior frame to make it more suitable for the dataset and to improve the detection accuracy. To improve the generalization ability of the model, a label smoothing algorithm is introduced. In addition, the structure reparameterization method is used to accelerate model reasoning. The experimental results show that the improved YOLOv5 model proposed in this paper can effectively identify pavement cracks. Compared with the original model, the mAP increased by 2.5%, the F1 score increased by 2.6%, and the model volume was smaller than that of YOLOv5. 1.62 times, the parameter was reduced by 1.66 times, and the GFLOPs were reduced by 1.69 times. This method can provide a reference for the automatic detection method of pavement cracks.
引用
收藏
页数:12
相关论文
共 25 条
[1]   Deep learning-based road damage detection and classification for multiple countries [J].
Arya, Deeksha ;
Maeda, Hiroya ;
Ghosh, Sanjay Kumar ;
Toshniwal, Durga ;
Mraz, Alexander ;
Kashiyama, Takehiro ;
Sekimoto, Yoshihide .
AUTOMATION IN CONSTRUCTION, 2021, 132
[2]   RDD2020: An annotated image dataset for automatic road damage detection using deep learning [J].
Arya, Deeksha ;
Maeda, Hiroya ;
Ghosh, Sanjay Kumar ;
Toshniwal, Durga ;
Sekimoto, Yoshihide .
DATA IN BRIEF, 2021, 36
[3]   Global Road Damage Detection: State-of-the-art Solutions [J].
Arya, Deeksha ;
Maeda, Hiroya ;
Ghosh, Sanjay Kumar ;
Toshniwal, Durga ;
Omata, Hiroshi ;
Kashiyama, Takehiro ;
Sekimoto, Yoshihide .
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, :5533-5539
[4]  
Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934
[5]  
Bowles C, 2018, Arxiv, DOI arXiv:1810.10863
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]  
Dai JF, 2016, ADV NEUR IN, V29
[8]   RepVGG: Making VGG-style ConvNets Great Again [J].
Ding, Xiaohan ;
Zhang, Xiangyu ;
Ma, Ningning ;
Han, Jungong ;
Ding, Guiguang ;
Sun, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13728-13737
[9]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[10]   Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method [J].
Haciefendioglu, Kemal ;
Basaga, Hasan Basri .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2022, 46 (02) :1621-1633