Effect of Fe-doping on bending elastic properties of single-crystalline rutile TiO2 nanowires

被引:2
作者
Liu, Qiong [1 ]
Zhan, Haifei [1 ,2 ]
Nie, Yihan [1 ]
Xu, Yanan [1 ]
Zhu, Huaiyong [1 ]
Sun, Ziqi [1 ]
Bell, John [3 ]
Bo, Arinxin [1 ]
Gu, Yuantong [1 ,2 ]
机构
[1] Queensland Univ Technol QUT, Sch Mech Med & Proc Engn, Brisbane, Qld 4001, Australia
[2] Queensland Univ Technol QUT, Ctr Mat Sci, Brisbane, Qld 4001, Australia
[3] Univ Southern Queensland, Ipswich 4300, Australia
来源
NANOSCALE ADVANCES | 2020年 / 2卷 / 07期
基金
澳大利亚研究理事会;
关键词
ROOM-TEMPERATURE FERROMAGNETISM; YOUNGS MODULUS; MECHANICAL-PROPERTIES; OXYGEN VACANCIES; BEHAVIOR;
D O I
10.1039/d0na00284d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition-metal-doping can improve some physical properties of titanium dioxide (TiO2) nanowires (NWs), which leads to important applications in miniature devices. Here, we investigated the elastic moduli of single-crystalline pristine and Fe-doped rutile TiO2 NWs using the three-point bending method, which is taken as a case study of impacts on the elastic properties of TiO2 NWs caused by transition-metal-doping. The Young's modulus of the pristine rutile TiO2 NWs decreases when the cross-sectional area increases (changing from 246 GPa to 93.2 GPa). However, the elastic modulus of the Fe-doped rutile NWs was found to increase with the cross-sectional area (changing from 91.8 GPa to 200 GPa). For NWs with similar geometrical size, the elastic modulus (156.8 GPa) for Fe-doped rutile NWs is 24% smaller than that (194.5 GPa) of the pristine rutile TiO2 NWs. The vacancies generated by Fe-doping are supposed to cause the reduction of elastic modulus of rutile TiO2 NWs. This work provides a fundamental understanding of the effects of transition-metal-doping on the elastic properties of TiO2 NWs.
引用
收藏
页码:2800 / 2807
页数:8
相关论文
共 49 条
[41]   Fracture Strain of SiC Nanowires and Direct Evidence of Electron-Beam Induced Amorphisation in the Strained Nanowires [J].
Wang, Shiliang ;
Wu, Yueqin ;
Lin, Liangwu ;
He, Yuehui ;
Huang, Han .
SMALL, 2015, 11 (14) :1672-1676
[42]   One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts [J].
Wang, Xudong ;
Li, Zhaodong ;
Shi, Jian ;
Yu, Yanhao .
CHEMICAL REVIEWS, 2014, 114 (19) :9346-9384
[43]   Path-directed and maskless fabrication of ordered TiO2 nanoribbons [J].
Wang, Yongsheng ;
Wang, Rui ;
Guo, Chuanfei ;
Miao, Junjie ;
Tian, Ye ;
Ren, Tianling ;
Liu, Qian .
NANOSCALE, 2012, 4 (05) :1545-1548
[44]   Substrate effect on the Young's modulus measurement of TiO2 nanoribbons by nanoindentation [J].
Wu, Xiaoxia ;
Amin, Syed S. ;
Xu, Terry T. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (05) :935-942
[45]   Mechanical Properties of ZnO Nanowires Under Different Loading Modes [J].
Xu, Feng ;
Qin, Qingqun ;
Mishra, Ashish ;
Gu, Yi ;
Zhu, Yong .
NANO RESEARCH, 2010, 3 (04) :271-280
[46]   Mechanical characteristics of individual TiO2 nanowire and TiO2 nanowire bundle on micro-manipulator nanoprobe system [J].
Ye, Zhenqiang ;
Zhu, Huijuan ;
Zheng, Yingying ;
Dong, Wenjun ;
Chen, Benyong .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 641 :281-289
[47]   Statistically Analyzed Photoresponse of Elastically Bent CdS Nanowires Probed by Light-Compatible In Situ High-Resolution TEM [J].
Zhang, Chao ;
Cretu, Ovidiu ;
Kvashnin, Dmitry G. ;
Kawamoto, Naoyuki ;
Mitome, Masanori ;
Wang, Xi ;
Bando, Yoshio ;
Sorokin, Pavel B. ;
Golbereg, Dmitri .
NANO LETTERS, 2016, 16 (10) :6008-6013
[48]   Quantifying and Elucidating Thermally Enhanced Minority Carrier Diffusion Length Using Radius-Controlled Rutile Nanowires [J].
Zhang, Liming ;
Sun, Litianqi ;
Guan, Zixuan ;
Lee, Sangchul ;
Li, Yingzhou ;
Deng, Haitao D. ;
Li, Yiyang ;
Ahlborg, Nadia L. ;
Boloor, Madhur ;
Melosh, Nicholas A. ;
Chueh, William C. .
NANO LETTERS, 2017, 17 (09) :5264-5272
[49]   Interfacial Lattice-Strain-Driven Generation of Oxygen Vacancies in an Aerobic-Annealed TiO2(B) Electrode [J].
Zhang, Wei ;
Cai, Lingfeng ;
Cao, Shengkai ;
Qiao, Liang ;
Zeng, Yi ;
Zhu, Zhiqiang ;
Lv, Zhisheng ;
Xia, Huarong ;
Zhong, Lixiang ;
Zhang, Hongwei ;
Ge, Xiang ;
Wei, Jiaqi ;
Xi, Shibo ;
Du, Yonghua ;
Li, Shuzhou ;
Chen, Xiaodong .
ADVANCED MATERIALS, 2019, 31 (52)