Conductance Peaks in Open Quantum Dots

被引:34
作者
Ramos, J. G. G. S. [1 ]
Bazeia, D. [1 ]
Hussein, M. S. [2 ]
Lewenkopf, C. H. [3 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, Brazil
[3] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
EXCITATION-FUNCTION; MATRIX THEORY; FLUCTUATIONS; TRANSPORT; SYSTEMS; INTEGRATION; SCATTERING;
D O I
10.1103/PhysRevLett.107.176807
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation function of T(Z). The parameter Z can be associated with an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of maxima is found to be <rho(Z)> = alpha(Z)/Z(c), where alpha(Z) is a universal constant and Z(c) is the conductance autocorrelation length, which is system specific. The analysis of <rho(Z)> does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as Z(c).
引用
收藏
页数:5
相关论文
共 22 条
[1]   The statistical theory of quantum dots [J].
Alhassid, Y .
REVIEWS OF MODERN PHYSICS, 2000, 72 (04) :895-968
[2]   Conductance fluctuations and weak localization in chaotic quantum dots [J].
Alves, ERP ;
Lewenkopf, CH .
PHYSICAL REVIEW LETTERS, 2002, 88 (25) :4
[3]   STATISTICAL PROPERTIES OF PARAMETER-DEPENDENT CLASSICALLY CHAOTIC QUANTUM-SYSTEMS [J].
AUSTIN, EJ ;
WILKINSON, M .
NONLINEARITY, 1992, 5 (05) :1137-1150
[4]   Quantum-chaotic scattering effects in semiconductor microstructures [J].
Baranger, Harold U. ;
Jalabert, Rodolfo A. ;
Stone, A. Douglas .
CHAOS, 1993, 3 (04) :665-682
[5]   MESOSCOPIC TRANSPORT THROUGH CHAOTIC CAVITIES - A RANDOM S-MATRIX THEORY APPROACH [J].
BARANGER, HU ;
MELLO, PA .
PHYSICAL REVIEW LETTERS, 1994, 73 (01) :142-145
[6]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[7]   COHERENCE WIDTH OF CROSS-SECTION FLUCTUATIONS AND MAXIMA IN EXCITATION FUNCTION [J].
BIZZETI, PG ;
MAURENZIG, PR .
NUOVO CIMENTO B, 1967, 47 (01) :29-+
[8]  
Blatt J.M., 1952, Theoretical Nuclear Physics
[9]   COUNTING THE PEAKS IN THE EXCITATION-FUNCTION FOR PRECOMPOUND PROCESSES [J].
BONETTI, R ;
HUSSEIN, MS ;
MELLO, PA .
PHYSICAL REVIEW C, 1983, 28 (02) :923-925
[10]   WIDTHS OF FLUCTUATIONS IN NUCLEAR CROSS SECTIONS [J].
BRINK, DM ;
STEPHEN, RO .
PHYSICS LETTERS, 1963, 5 (01) :77-79