Spectral decomposition of Bell's operators for qubits

被引:118
作者
Scarani, V [1 ]
Gisin, N [1 ]
机构
[1] Univ Geneva, Appl Phys Grp, CH-1211 Geneva, Switzerland
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 30期
关键词
D O I
10.1088/0305-4470/34/30/314
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral decomposition is given for the N-qubit Bell operators with two observables per qubit. It is found that the eigenstates (when non-degenerate) are N-qubit GHZ states even for those operators that do not allow the maximal violation of the corresponding inequality. We present two applications of this analysis. In particular, we discuss the existence of pare entangled states that do not violate the Mermin-Klyshko inequality for N greater than or equal to 3.
引用
收藏
页码:6043 / 6053
页数:11
相关论文
共 17 条
[1]  
Belinskii A. V., 1993, Physics-Uspekhi, V36, P653, DOI 10.1070/PU1993v036n08ABEH002299
[2]   WRINGING OUT BETTER BELL INEQUALITIES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
ANNALS OF PHYSICS, 1990, 202 (01) :22-56
[3]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[4]   BELL INEQUALITIES WITH A RANGE OF VIOLATION THAT DOES NOT DIMINISH AS THE SPIN BECOMES ARBITRARILY LARGE [J].
GARG, A ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1982, 49 (13) :901-904
[5]   CORRECTION [J].
GARG, A .
PHYSICAL REVIEW LETTERS, 1982, 49 (17) :1294-1294
[6]   BELL INEQUALITY HOLDS FOR ALL NON-PRODUCT STATES [J].
GISIN, N .
PHYSICS LETTERS A, 1991, 154 (5-6) :201-202
[7]   Bell inequality, Bell states and maximally entangled states for n qubits [J].
Gisin, N ;
Bechmann-Pasquinucci, H .
PHYSICS LETTERS A, 1998, 246 (1-2) :1-6
[8]   MAXIMAL VIOLATION OF BELL INEQUALITY FOR ARBITRARILY LARGE SPIN [J].
GISIN, N ;
PERES, A .
PHYSICS LETTERS A, 1992, 162 (01) :15-17
[9]   Bell inequality for arbitrary many settings of the analyzers [J].
Gisin, N .
PHYSICS LETTERS A, 1999, 260 (1-2) :1-3
[10]   VIOLATING BELL INEQUALITY BY MIXED SPIN-1/2 STATES - NECESSARY AND SUFFICIENT CONDITION [J].
HORODECKI, R ;
HORODECKI, P ;
HORODECKI, M .
PHYSICS LETTERS A, 1995, 200 (05) :340-344