Complexity of time series associated to dynamical systems inferred from independent component analysis

被引:26
作者
De Lauro, E
De Martino, S
Falanga, M
Ciaramella, A
Tagliaferri, R
机构
[1] Univ Studi Salerno, Dipartimento Fis, I-84084 Baronissi, SA, Italy
[2] Ist Nazl Fis Nucl, Grp Coll Salerno, I-84081 Baronissi, SA, Italy
[3] Univ Salerno, Dipartimento Matemat & Informat, I-84081 Baronissi, SA, Italy
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 04期
关键词
D O I
10.1103/PhysRevE.72.046712
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A not trivial problem for every experimental time series associated to a natural system is to individuate the significant variables to describe the dynamics, i.e., the effective degrees of freedom. The application of independent component analysis (ICA) has provided interesting results in this direction, e.g., in the seismological and atmospheric field. Since all natural phenomena can be represented by dynamical systems, our aim is to check the performance of ICA in this general context to avoid ambiguities when investigating an unknown experimental system. We show many examples, representing linear, nonlinear, and stochastic processes, in which ICA seems to be an efficacious preanalysis able to give information about the complexity of the dynamics.
引用
收藏
页数:14
相关论文
共 17 条
[1]  
Abarbanel H., 1996, ANAL OBSERVED CHAOTI
[2]   Polarisation analysis of the independent components of low frequency events at Stromboli volcano (Eolian Islands, Italy) [J].
Acernese, F ;
Ciaramella, A ;
De Martino, S ;
Falanga, M ;
Godano, C ;
Tagliaferri, E .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2004, 137 (1-3) :153-168
[3]   Neural networks for blind-source separation of Stromboli explosion quakes. [J].
Acernese, F ;
Ciaramella, A ;
De Martino, S ;
De Rosa, R ;
Falanga, M ;
Tagliaferri, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01) :167-175
[4]  
Andronov A. A., 1966, THEORY OSCILLATORS
[5]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[6]   THE MECHANISM OF STOCHASTIC RESONANCE [J].
BENZI, R ;
SUTERA, A ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11) :L453-L457
[7]   Analogical model inferred from time domain analysis and generating organ pipes self sustained-tone [J].
Bottiglieri, M ;
De Lauro, E ;
De Martino, S ;
Falanga, MR .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (4-5) :509-518
[8]   Stochastic resonance mechanism in aerosol index dynamics [J].
De Martino, S ;
Falanga, M ;
Mona, L .
PHYSICAL REVIEW LETTERS, 2002, 89 (12) :1285011-1285014
[9]   Very-long-period volcanic tremor at Stromboli, Italy [J].
De Martino, S ;
Falanga, M ;
Scarpa, R ;
Godano, C .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2005, 95 (03) :1186-1192
[10]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287