Semiclassical treatment of logarithmic perturbation theory

被引:10
作者
Dobrovolska, IV [1 ]
Tutik, RS [1 ]
机构
[1] Dniepropetrovsk State Univ, Dept Phys, UA-320625 Dniepropetrovsk, Ukraine
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 03期
关键词
D O I
10.1088/0305-4470/32/3/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon (h) over bar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by lambda x(6) are considered.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 30 条
[11]   ALTERNATIVE APPROACH TO NONRELATIVISTIC PERTURBATION-THEORY [J].
KIM, IW ;
SUKHATME, UP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (11) :L647-L650
[12]   Wave mechanics and half-integral quantisation [J].
Kramers, HA .
ZEITSCHRIFT FUR PHYSIK, 1926, 39 (10/11) :828-840
[13]  
MASLOV VP, 1977, COMPLEX METHOD WKB N
[14]  
POLIKANOV VS, 1975, THEOR MATH PHYS, V24, P230
[15]  
RUBINOVICZ A, 1968, QUANTUM MECH
[16]  
Slavjanov S. Ju., 1969, DIFFER EQU, V5, P313
[17]  
SLAVYANOV SY, 1990, ASYMPTOTIC SOLUTIONS
[18]  
STEPANOV SS, 1992, ZH EKSP TEOR FIZ+, V101, P18
[19]   A NEW TECHNIQUE FOR DERIVING THE LARGE-N SOLUTION OF THE KLEIN-GORDON EQUATION [J].
STEPANOV, SS ;
TUTIK, RS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (09) :L469-L474
[20]   A NEW APPROACH TO THE 1/N-EXPANSION FOR THE DIRAC-EQUATION [J].
STEPANOV, SS ;
TUTIK, RS .
PHYSICS LETTERS A, 1992, 163 (1-2) :26-31