Semiclassical treatment of logarithmic perturbation theory

被引:10
作者
Dobrovolska, IV [1 ]
Tutik, RS [1 ]
机构
[1] Dniepropetrovsk State Univ, Dept Phys, UA-320625 Dniepropetrovsk, Ukraine
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 03期
关键词
D O I
10.1088/0305-4470/32/3/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon (h) over bar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by lambda x(6) are considered.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 30 条
[1]   EXCITED BOUND-STATE LOGARITHMIC PERTURBATION-THEORY WITHOUT NODES [J].
AU, CK ;
CHAN, KL ;
CHOW, CK ;
CHU, CS ;
YOUNG, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16) :3837-3850
[2]   LOGARITHMIC PERTURBATION EXPANSIONS [J].
AU, CK ;
AHARONOV, Y .
PHYSICAL REVIEW A, 1979, 20 (06) :2245-2250
[3]  
BRAJAMANI E, 1988, INT J THEOR PHYS, V27, P397
[4]  
Brillouin L, 1926, CR HEBD ACAD SCI, V183, P24
[5]   Exact semiclassical expansions for one-dimensional quantum oscillators [J].
Delabaere, E ;
Dillinger, H ;
Pham, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6126-6184
[6]   MODIFIED PERTURBATION THEORIES FOR AN ANHARMONIC-OSCILLATOR [J].
DOLGOV, AD ;
POPOV, VS .
PHYSICS LETTERS B, 1978, 79 (4-5) :403-405
[7]   APPROXIMATE ANALYTIC-EXPRESSION FOR THE EIGENENERGIES OF THE ANHARMONIC-OSCILLATOR V(X)=AX(6)+BX(2) [J].
DUTRA, AD ;
DECASTRO, AS ;
BOSCHIFILHO, H .
PHYSICAL REVIEW A, 1995, 51 (05) :3480-3484
[8]   EIGENVALUES FROM THE RICCATI EQUATION [J].
FERNANDEZ, FM ;
CASTRO, EA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (16) :5541-5547
[9]   PERTURBATION-THEORY WITH CANONICAL-TRANSFORMATIONS [J].
FERNANDEZ, FM .
PHYSICAL REVIEW A, 1992, 45 (03) :1333-1338
[10]   LOGARITHMIC PERTURBATION EXPANSIONS IN NONRELATIVISTIC QUANTUM-MECHANICS [J].
IMBO, T ;
SUKHATME, U .
AMERICAN JOURNAL OF PHYSICS, 1984, 52 (02) :140-146