Stereo Visual Inertial Odometry for Robots with Limited Computational Resources

被引:7
作者
Bahnam, Stavrow [1 ]
Pfeiffer, Sven [1 ]
de Croon, Guido C. H. E. [1 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Control & Operat Dept, MAVLab, NL-2628 CD Delft, Netherlands
来源
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2021年
关键词
Aerial Systems: Perception and Autonomy; Vision-Based Navigation; Computational Efficiency; KALMAN FILTER;
D O I
10.1109/IROS51168.2021.9636807
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current existing stereo visual odometry algorithms are computationally too expensive for robots with restricted resources. Executing these algorithms on such robots leads to a low frame rate and unacceptable decay in accuracy. We modify S-MSCKF, one of the most computationally efficient stereo Visual Inertial Odometry (VIO) algorithm, to improve its speed and accuracy when tracking low numbers of features. Specifically, we implement the Inverse Lucas-Kanade (ILK) algorithm for feature tracking and stereo matching. An outlier detector based on the average sum square difference of the template and matching warp in the ILK ensures higher robustness, e.g., in the presence of brightness changes. We restrict stereo matching to slide the window only in the x-direction to further decrease the computational costs. Moreover, we limit detection of new features to the regions of interest that have too few features. The modified S-MSCKF uses half of the processing time while obtaining competitive accuracy. This allows the algorithm to run in real-time on the extremely limited Raspberry Pi Zero single-board computer.
引用
收藏
页码:9154 / 9159
页数:6
相关论文
共 26 条
[1]   Lucas-Kanade 20 years on: A unifying framework [J].
Baker, S ;
Matthews, I .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) :221-255
[2]  
Bi YC, 2018, IEEE INT CONF CON AU, P265, DOI 10.1109/ICCA.2018.8444257
[3]   Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback [J].
Bloesch, Michael ;
Burri, Michael ;
Omari, Sammy ;
Hutter, Marco ;
Siegwart, Roland .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (10) :1053-1072
[4]  
Burri M., 2016, INT J ROBOT RES, V35, P1
[5]   Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy [J].
de Croon, Guido C. H. E. .
BIOINSPIRATION & BIOMIMETICS, 2016, 11 (01)
[6]  
de Croon GCHE, 2013, IEEE INT CONF ROBOT, P4679, DOI 10.1109/ICRA.2013.6631243
[7]  
de Palézieuxl N, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P2237, DOI 10.1109/IROS.2016.7759350
[8]  
Delmerico J, 2018, IEEE INT CONF ROBOT, P2502
[9]   Simultaneous localization and mapping: Part I [J].
Durrant-Whyte, Hugh ;
Bailey, Tim .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (02) :99-108
[10]   SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems [J].
Forster, Christian ;
Zhang, Zichao ;
Gassner, Michael ;
Werlberger, Manuel ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (02) :249-265