GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS OF A TIME FRACTIONAL REACTION DIFFUSION SYSTEM

被引:5
作者
Alsaedi, Ahmed [1 ]
Ahmad, Bashir [1 ]
Kirane, Mokhtar [1 ,2 ]
Lassoued, Rafika [3 ]
机构
[1] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[2] La Rochelle Univ, LaSIE, UMR CNRS 7356, Ave M Crepeau, F-17042 La Rochelle, France
[3] Fac Sci Monastir, Lab Math Appl & Anal Harmon, Ave Environm, Monastir 5019, Tunisia
关键词
reaction-diffusion system; fractional calculus; Caputo derivative; local and global existence; large time behavior; MAXIMUM PRINCIPLE; BRUSSELATOR; EQUATIONS;
D O I
10.1515/fca-2020-0019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is proved that a time fractional reaction diffusion system with reaction terms of the Brusselator type admits a global solution by using the feedback method of F. Rothe [20]. Furthermore, some results on the large time behavior of the solutions are obtained. We give a positive answer to Problem 6 of the valuable paper of Gal and Warma [6].
引用
收藏
页码:390 / 407
页数:18
相关论文
共 28 条
[1]   A priori estimates for solutions of boundary value problems for fractional-order equations [J].
Alikhanov, A. A. .
DIFFERENTIAL EQUATIONS, 2010, 46 (05) :660-666
[2]   MAXIMUM PRINCIPLE FOR CERTAIN GENERALIZED TIME AND SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mokhtar .
QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (01) :163-175
[3]  
Benilan P., 1989, PITMAN RES NOTES MAT, V208, P139
[4]   Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :613-637
[5]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[6]   Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems [J].
Gafiychuk, V. ;
Datsko, B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1101-1107
[7]  
Gal CG., 2020, Fractional-in-Time Semilinear Parabolic Equations and Applications, DOI [10.1007/978-3-030-45043-4, DOI 10.1007/978-3-030-45043-4]
[8]   TURING PATTERNS IN GENERAL REACTION-DIFFUSION SYSTEMS OF BRUSSELATOR TYPE [J].
Ghergu, Marius ;
Radulescu, Vicentiu .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (04) :661-679
[9]  
Glansdorff P., 1971, THERMODYNAMIC THEORY, DOI [10.1017/S0022112072210217, DOI 10.1017/S0022112072210217]
[10]   TURING PATTERN FORMATION IN THE BRUSSELATOR MODEL WITH SUPERDIFFUSION [J].
Golovin, A. A. ;
Matkowsky, B. J. ;
Volpert, V. A. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (01) :251-272