Integrated stochastic analysis of fiber composites manufacturing using adapted polynomial chaos expansions

被引:18
作者
Ghauch, Ziad G. [1 ]
Aitharaju, Venkat [2 ]
Rodgers, William R. [2 ]
Pasupuleti, Praveen [3 ]
Dereims, Arnaud [3 ]
Ghanem, Roger G. [1 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA
[2] Gen Motors Co, GM R&D Ctr, Warren, MI 48092 USA
[3] ESI Grp, F-75015 Paris, France
关键词
Fiber composite; Resin transfer molding; Uncertainty propagation; ICME; Polynomial chaos; Model reduction; UNCERTAINTY QUANTIFICATION; INPLANE PERMEABILITY; BASIS ADAPTATION; FLOW; SIMULATION; REINFORCEMENTS; DEFORMATION; PREDICTION; DESIGN; SHEAR;
D O I
10.1016/j.compositesa.2018.12.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The manufacturing of fiber composite materials involves a set of complex, interconnected processes that span across multiple physics and scales. The characterization of uncertainty in composite manufacturing predictions is a challenging task that involves high-dimensional, multiscale, multiphysics stochastic models. We demonstrate the use of a basis adaptation scheme within a polynomial chaos representation that permits the incorporation of a large number of stochastic variables in the analysis. We use the proposed PCE-based workflow to analyze the interplay of uncertainty through all the fiber composite manufacturing stages that comprise the Resin Transfer Molding (RTM) process. The proposed framework is centered on an integrated assessment of uncertainty in composite structures using probabilistic surrogate models for predefined QoI.
引用
收藏
页码:179 / 193
页数:15
相关论文
共 37 条
[1]   Influence of shear on the permeability tensor and compaction behaviour of a non-crimp fabric [J].
Aranda, S. ;
Berg, D. C. ;
Dickert, M. ;
Drechsel, M. ;
Ziegmann, G. .
COMPOSITES PART B-ENGINEERING, 2014, 65 :158-163
[2]   Investigation of draping and its effects on the mold filling process during manufacturing of a compound curved composite part [J].
Bickerton, S ;
Simacek, P ;
Guglielmi, SE ;
Advani, SG .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 1997, 28 (9-10) :801-816
[3]  
Buhmann M. D, 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
[4]   PREDICTION OF THE GLASS-TRANSITION TEMPERATURE OF POLYMERS - A MODEL BASED ON THE PRINCIPLE OF CORRESPONDING STATES [J].
DIBENEDETTO, AT .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1987, 25 (09) :1949-1969
[5]   Influence of the fabric architecture on the variations in experimentally determined in-plane permeability values [J].
Endruweit, A. ;
McGregor, P. ;
Long, A. C. ;
Johnson, M. S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (11-12) :1778-1792
[6]   The in-plane permeability of sheared textiles. Experimental observations and a predictive conversion model [J].
Endruweit, A ;
Ermanni, P .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2004, 35 (04) :439-451
[7]  
ESI, 2018, PAM COMPOSITES US GU
[8]   Scales of fluctuation and the propagation of uncertainty in random porous media [J].
Ghanem, R .
WATER RESOURCES RESEARCH, 1998, 34 (09) :2123-2136
[9]  
Ghauch Z, 2018, P AM SOC COMP 33 TEC
[10]   New set-up for measurement of permeability properties of fibrous reinforcements for RTM [J].
Hoes, K ;
Dinescu, D ;
Sol, H ;
Vanheule, M ;
Parnas, RS ;
Luo, YW ;
Verpoest, I .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2002, 33 (07) :959-969