Latent Autoregressive Gaussian Processes Models for Robust System Identification

被引:14
作者
Mattos, Cesar Lincoln C. [1 ]
Damianou, Andreas [2 ,3 ]
Barreto, Guilherme A. [1 ]
Lawrence, Neil D. [2 ,3 ]
机构
[1] Univ Fed Ceara, Dept Teleinformat Engn, Ctr Technol, Campus Pici, Fortaleza, Ceara, Brazil
[2] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[3] Univ Sheffield, SITraN, Sheffield, S Yorkshire, England
关键词
Modelling and system identification; dynamic modelling; Gaussian process; outliers; autoregressive models;
D O I
10.1016/j.ifacol.2016.07.353
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce GP-RLARX, a novel Gaussian Process (GP) model for robust, system identification. Our approach draws inspiration front nonlinear autoregressive modeling with exogenous inputs (NARX) and it encapsulates a novel and powerful structure referred to as latent autoregression. This structure accounts for the feedback of uncertain values during training and provides a natural framework for free simulation prediction. By using a Student-t likelihood, GP-RLARX can be used in scenarios where the estimation data contain non-Gaussian noise in the form of outliers. Further, a variational approximation scheme is developed to jointly optimize all the hyperparameters of the model from available estimation data. We perform experiments with five widely used artificial benchmarking datasets with different levels of outlier contamination and compare GP-RLARX with the standard GP-NARX model and its robust variant, GP-tVB. GP-RLARX is found to outperform the competing him by a relatively wide margin, indicating that our latent autoregressive structure is more suitable for robust system identification. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1121 / 1126
页数:6
相关论文
共 23 条
[11]  
Kuss M., 2006, Gaussian process models for robust regression, classification, and reinforcement learning
[12]  
Ljung Lennart, 1998, System Identification: Theory for the User
[13]   An Empirical Evaluation of Robust Gaussian Process Models for System Identification [J].
Mattos, Cesar Lincoln C. ;
Santos, Jose Daniel A. ;
Barreto, Guilherme A. .
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2015, 2015, 9375 :172-180
[14]  
Minka T., 2001, C UNC ART INT, P362, DOI 10.48550/arXiv.1301.2294
[15]  
Murray-Smith R., 1999, EUR CONTR C ECC 99 K
[16]  
Narendra K S, 1990, IEEE Trans Neural Netw, V1, P4, DOI 10.1109/72.80202
[17]  
Peterka V., 1981, Trends and Progress in System Identificaion, P239, DOI DOI 10.1016/B978-0-08-025683-2.50013-2
[18]  
Rottmann A, 2010, LECT NOTES COMPUT SC, V6376, P192
[19]  
Seeger Matthias, 2004, Int J Neural Syst, V14, P69, DOI 10.1142/S0129065704001899
[20]  
Solak E., 2003, NIPS, P16