Magnetic tunneling junctions based on 2D CrI3 and CrBr3: spin-filtering effects and high tunnel magnetoresistance via energy band difference

被引:5
作者
Liu, Li [1 ]
Ye, Shizhuo [1 ]
He, Jin [1 ]
Huang, Qijun [1 ]
Wang, Hao [1 ]
Chang, Sheng [1 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Minist Educ, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
spintronics; van der Waals; density functional theory; spin transport; INTRINSIC FERROMAGNETISM; SPINTRONICS; CRYSTAL;
D O I
10.1088/1361-6641/ac3639
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the study of two-dimensional materials has expanded to the field of spintronics. Intrinsically ferromagnetic van der Waals materials such as CrI3 and CrBr3 have received much attention due to their nearly 100% spin polarization and good stability, resulting in excellent performance in magnetic tunnel junctions. In this work, we design magnetic tunnel junctions (MTJs) of Cu/CrI3/Cu and Cu/CrBr3/Cu with electrodes of Cu(111) and a tunneling barrier of four-monolayer CrI3 or CrBr3. Our first-principle calculations combined with non-equilibrium Green's function method indicate that the CrBr3-based MTJ has a larger maximum tunneling magnetoresistance ratio than the CrI3-based MTJ. In a wide bias voltage range, the CrI3-based MTJ can maintain high spin-filtering performance, while that of the CrBr3-based MTJ degrades sharply as the bias voltage increases. It is noted that a negative differential resistance effect is observed in the CrBr3-based MTJ. The differences in spin transport properties between the CrI3-based MTJ and the CrBr3-based MTJ are clarified in terms of the physics inside the device, including the spin-dependent density of states, band structures, Bloch states, and the electron density difference. This work provides some physical insights for the design of 2D van der Waals MTJs.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[2]   JOSEPHSON BEHAVIOR IN SMALL NORMAL ONE-DIMENSIONAL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R .
PHYSICS LETTERS A, 1983, 96 (07) :365-367
[3]   Magnetism and electronic structures of bismuth (stannum) films at the CrI3 (CrBr3) interface [J].
Chen, Li ;
Jiang, Chuan ;
Yang, Maoyou ;
Hu, Tao ;
Meng, Yan ;
Lei, Jie ;
Zhang, Mingjian .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (07) :4255-4261
[4]   Spintronics: electron spin coherence, entanglement, and transport [J].
Das Sarma, S ;
Fabian, J ;
Hu, XD ;
Zutic, I .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 27 (5-6) :289-295
[5]   High tunnel magnetoresistance based on 2D Dirac spin gapless semiconductor VCl3 [J].
Feng, Yulin ;
Wu, Xuming ;
Gao, Guoying .
APPLIED PHYSICS LETTERS, 2020, 116 (02)
[6]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[7]  
Haigh SJ, 2012, NAT MATER, V11, P764, DOI [10.1038/NMAT3386, 10.1038/nmat3386]
[8]   Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers [J].
He, Junjie ;
Ma, Shuangying ;
Lyu, Pengbo ;
Nachtigall, Petr .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (13) :2518-2526
[9]   Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit [J].
Huang, Bevin ;
Clark, Genevieve ;
Navarro-Moratalla, Efren ;
Klein, Dahlia R. ;
Cheng, Ran ;
Seyler, Kyle L. ;
Zhong, Ding ;
Schmidgall, Emma ;
McGuire, Michael A. ;
Cobden, David H. ;
Yao, Wang ;
Xiao, Di ;
Jarillo-Herrero, Pablo ;
Xu, Xiaodong .
NATURE, 2017, 546 (7657) :270-+
[10]   Strain-Mediated High Conductivity in Ultrathin Antiferromagnetic Metallic Nitrides [J].
Jin, Qiao ;
Cheng, Hu ;
Wang, Zhiwen ;
Zhang, Qinghua ;
Lin, Shan ;
Roldan, Manuel A. ;
Zhao, Jiali ;
Wang, Jia-Ou ;
Chen, Shuang ;
He, Meng ;
Ge, Chen ;
Wang, Can ;
Lu, Hui-Bin ;
Guo, Haizhong ;
Gu, Lin ;
Tong, Xin ;
Zhu, Tao ;
Wang, Shanmin ;
Yang, Hongxin ;
Jin, Kui-juan ;
Guo, Er-Jia .
ADVANCED MATERIALS, 2021, 33 (02)