Simulation of the thermal shock of brittle materials using the finite-discrete element method

被引:41
作者
Yan, Chengzeng [1 ,2 ]
Fan, Hongwei [1 ]
Zheng, Yuchen [1 ]
Zhao, Yingjie [1 ]
Ning, Fulong [1 ]
机构
[1] China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Int Joint Res Ctr Deep Earth Drilling & Resource, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite-discrete element method; Thermal shock; Thermal cracking; Thermo-mechanical coupling; Brittle material; CRACK PATTERNS; NUMERICAL SIMULATIONS; STRESS RESISTANCE; PORE SEEPAGE; MODEL; FRACTURE; BEHAVIOR; FAILURE; TEMPERATURE; PROPAGATION;
D O I
10.1016/j.enganabound.2020.03.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal shock failure of brittle materials is a very common problem in the fields of machinery, metallurgy, aerospace and civil engineering. In this paper, a coupled thermomechanical model based on the finite-discrete element method is used to simulate crack initiation and propagation during the thermal shock of ceramic specimens. The effects of the initial temperature, thermal conductivity and heat transfer coefficient on the thermal shock of ceramics were investigated. The crack morphology shows obvious periodical and hierarchical characteristics for ceramic specimens under thermal shock. The total number of cracks in the thermal shock process increases and the crack spacing decreases as the initial temperature of the ceramic or the heat transfer coefficient between water and ceramic increase. However, as the thermal conductivity increases, the total number of cracks decrease and the crack spacing increases.
引用
收藏
页码:142 / 155
页数:14
相关论文
共 70 条
[1]  
[Anonymous], US GUID
[2]  
[Anonymous], 2019, INT J NUMER ANAL MET
[3]   THERMAL-SHOCK CRACK PATTERNS EXPLAINED BY SINGLE AND MULTIPLE CRACK-PROPAGATION [J].
BAHR, HA ;
FISCHER, G ;
WEISS, HJ .
JOURNAL OF MATERIALS SCIENCE, 1986, 21 (08) :2716-2720
[4]   Scaling behavior of thermal shock crack patterns and tunneling cracks driven by cooling or drying [J].
Bahr, Hans-Achim ;
Weiss, Hans-Juergen ;
Bahr, Ute ;
Hofmann, Martin ;
Fischer, Gottfried ;
Lampenscherf, Stefan ;
Balke, Herbert .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2010, 58 (09) :1411-1421
[5]   STABILITY AND POST-CRITICAL GROWTH OF A SYSTEM OF COOLING OR SHRINKAGE CRACKS [J].
BAZANT, ZP ;
OHTSUBO, H ;
AOH, K .
INTERNATIONAL JOURNAL OF FRACTURE, 1979, 15 (05) :443-456
[6]   Morphogenesis and Propagation of Complex Cracks Induced by Thermal Shocks [J].
Bourdin, Blaise ;
Marigo, Jean-Jacques ;
Maurini, Corrado ;
Sicsic, Paul .
PHYSICAL REVIEW LETTERS, 2014, 112 (01)
[7]   Analysis and prediction of thermal shock in brittle materials [J].
Collin, M ;
Rowcliffe, D .
ACTA MATERIALIA, 2000, 48 (08) :1655-1665
[8]   Thermal shock response via weakly coupled peridynamic thermo-mechanics [J].
D'Antuono, Pietro ;
Morandini, Marco .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2017, 129 :74-89
[9]  
Fukuda D, 2019, Int J Numer Anal Methods GeoMech, P1
[10]   Development of a 3D Hybrid Finite-Discrete Element Simulator Based on GPGPU-Parallelized Computation for Modelling Rock Fracturing Under Quasi-Static and Dynamic Loading Conditions [J].
Fukuda, Daisuke ;
Mohammadnejad, Mojtaba ;
Liu, Hongyuan ;
Zhang, Qianbing ;
Zhao, Jian ;
Dehkhoda, Sevda ;
Chan, Andrew ;
Kodama, Jun-ichi ;
Fujii, Yoshiaki .
ROCK MECHANICS AND ROCK ENGINEERING, 2020, 53 (03) :1079-1112