Explosion Characteristics of Water Gas for Fischer-Tropsch Process

被引:0
作者
Skrinsky, Jan [1 ]
Veres, Jan [1 ]
Kolonicny, Jan [1 ]
Ochodek, Tadeas [1 ]
机构
[1] VSB Tech Univ Ostrava, Energy Res Ctr, 17 Listopadu 15-2172, Ostrava 70833, Czech Republic
来源
INZYNIERIA MINERALNA-JOURNAL OF THE POLISH MINERAL ENGINEERING SOCIETY | 2019年 / 02期
关键词
explosion modeling; explosion characteristics; carbon dioxide; hydrogen; water gas;
D O I
10.29227/IM-2019-02-20
中图分类号
TD [矿业工程];
学科分类号
0819 ;
摘要
Experimental study is presented for different CO-air and H-2-air mixtures at a maximum concentration range. CO concentration ranges from 12.5 +/- 0.2 % vol. to 70.5 +/- 0.2 % vol. and H-2 concentration ranges from 4.5 +/- 0.2 % vol. to 76.0 +/- 0.2 % vol. in a mixture with air at ambient atmospheric pressure (1 bar) and temperature (25 degrees C). The explosion parameters of explosion pressure and maximum rate of pressure rise for water gas-air mixture were measured within the studied range, i.e. 0.30-2.13 at temperature of 25 degrees C and pressure of 101 kPa. The experimental values of the maximum explosion pressure is compared with the mathematical modeling of this gas. The influence of initial concentration on the explosion characteristics were discussed.
引用
收藏
页码:117 / 121
页数:5
相关论文
共 50 条
[41]   Maximizing the profitability of integrated Fischer-Tropsch GTL process with ammonia and urea synthesis using response surface methodology [J].
Ziaei, Mohammad ;
Panahi, Mehdi ;
Fanaei, Mohammad Ali ;
Rafiee, Ahmad ;
Khalilpour, Kaveh R. .
JOURNAL OF CO2 UTILIZATION, 2020, 35 :14-27
[42]   Sustainable power-to-liquids aviation fuels: Modelling and comparison of two Fischer-Tropsch upgrading process concepts [J].
Nyholm, Fredrik ;
Toppinen, Sami ;
Saxen, Henrik .
ENERGY CONVERSION AND MANAGEMENT, 2025, 342
[43]   Process analysis for polygeneration of Fischer-Tropsch liquids and power with CO2 capture based on coal gasification [J].
Yu, Ge-wen ;
Xu, Yuan-yuan ;
Hao, Xu ;
Li, Yong-wang ;
Liu, Guang-qi .
FUEL, 2010, 89 (05) :1070-1076
[44]   Efficient electrocatalytic conversion of CO2 to syngas for the Fischer-Tropsch process using a partially reduced Cu3P nanowire [J].
Chang, Bing ;
Zhang, Xia-Guang ;
Min, Zhaojun ;
Lu, Weiwei ;
Li, Zhiyong ;
Qiu, Jikuan ;
Wang, Huiyong ;
Fan, Jing ;
Wang, Jianji .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (33) :17876-17884
[45]   Fischer-Tropsch synthesis on Co/ZnO catalyst-Effect of pretreatment procedure [J].
Pan, Zhendong ;
Bukur, Dragomir B. .
APPLIED CATALYSIS A-GENERAL, 2011, 404 (1-2) :74-80
[46]   Tri-cobalt Carboxylate as a Catalyst and Catalyst Precursor in the Fischer-Tropsch Synthesis [J].
Fischer, N. ;
van Steen, E. ;
Claeys, M. .
CHEMCATCHEM, 2014, 6 (06) :1707-1713
[47]   Effect of ammonia on cobalt Fischer-Tropsch synthesis catalysts: a surface science approach [J].
Kizilkaya, Ali Can ;
Niemantsverdriet, J. W. ;
Weststrate, C. J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (03) :702-710
[48]   Influence of Syngas Composition on the Kinetics of Fischer-Tropsch Synthesis of using Cobalt as Catalyst [J].
Poehlmann, Ferdinand ;
Jess, Andreas .
ENERGY TECHNOLOGY, 2016, 4 (01) :55-64
[49]   Cobalt and iron species in alumina supported bimetallic catalysts for Fischer-Tropsch reaction [J].
Griboval-Constant, Anne ;
Butel, Aurore ;
Ordomsy, Vitaly V. ;
Chernavskii, Petr. A. ;
Khodakova, A. Y. .
APPLIED CATALYSIS A-GENERAL, 2014, 481 :116-126
[50]   Effect of High Pressure on the Reducibility and Dispersion of the Active Phase of Fischer-Tropsch Catalysts [J].
Yunes, Simon ;
Angel Vicente, Miguel ;
Korili, Sophia A. ;
Gil, Antonio .
MATERIALS, 2019, 12 (12)