Explosion Characteristics of Water Gas for Fischer-Tropsch Process

被引:0
作者
Skrinsky, Jan [1 ]
Veres, Jan [1 ]
Kolonicny, Jan [1 ]
Ochodek, Tadeas [1 ]
机构
[1] VSB Tech Univ Ostrava, Energy Res Ctr, 17 Listopadu 15-2172, Ostrava 70833, Czech Republic
来源
INZYNIERIA MINERALNA-JOURNAL OF THE POLISH MINERAL ENGINEERING SOCIETY | 2019年 / 02期
关键词
explosion modeling; explosion characteristics; carbon dioxide; hydrogen; water gas;
D O I
10.29227/IM-2019-02-20
中图分类号
TD [矿业工程];
学科分类号
0819 ;
摘要
Experimental study is presented for different CO-air and H-2-air mixtures at a maximum concentration range. CO concentration ranges from 12.5 +/- 0.2 % vol. to 70.5 +/- 0.2 % vol. and H-2 concentration ranges from 4.5 +/- 0.2 % vol. to 76.0 +/- 0.2 % vol. in a mixture with air at ambient atmospheric pressure (1 bar) and temperature (25 degrees C). The explosion parameters of explosion pressure and maximum rate of pressure rise for water gas-air mixture were measured within the studied range, i.e. 0.30-2.13 at temperature of 25 degrees C and pressure of 101 kPa. The experimental values of the maximum explosion pressure is compared with the mathematical modeling of this gas. The influence of initial concentration on the explosion characteristics were discussed.
引用
收藏
页码:117 / 121
页数:5
相关论文
共 50 条
[31]   Perspectives on the effect of sulfur on the hydrocarbonaceous overlayer on iron Fischer-Tropsch catalysts [J].
Warringham, Robbie ;
Davidson, Alisha L. ;
Webb, Paul B. ;
Tooze, Robert P. ;
Parker, Stewart F. ;
Lennon, David .
CATALYSIS TODAY, 2020, 339 :32-39
[32]   Ammonia Adsorption and Decomposition on Co(0001) in Relation to Fischer-Tropsch Synthesis [J].
Kizilkaya, A. C. ;
Niemantsverdriet, J. W. ;
Weststrate, C. J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (07) :3834-3845
[33]   Use of probe molecules for Fischer-Tropsch mechanistic investigations: A short review [J].
Sage, Valerie ;
Burke, Nick .
CATALYSIS TODAY, 2011, 178 (01) :137-141
[34]   Natural aluminosilicate nanotubes loaded with RuCo as nanoreactors for Fischer-Tropsch synthesis [J].
Mazurova, Kristina ;
Glotov, Aleksandr ;
Kotelev, Mikhail ;
Eliseev, Oleg ;
Gushchin, Pavel ;
Rubtsova, Maria ;
Vutolkina, Anna ;
Kazantsev, Ruslan ;
Vinokurov, Vladimir ;
Stavitskaya, Anna .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2022, 23 (01) :17-30
[35]   Study on physicochemical properties of biodiesel and Fischer-Tropsch diesel exhaust particle [J].
Zhang, Yu ;
Wang, Zhong ;
Li, Ruina ;
Liu, Shuai .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (01) :139-152
[36]   Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer-Tropsch processes [J].
Stempien, Jan Pawel ;
Ni, Meng ;
Sun, Qiang ;
Chan, Siew Hwa .
ENERGY, 2015, 81 :682-690
[37]   A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer-Tropsch fuel production [J].
Liu, Caroline M. ;
Sandhu, Navjot K. ;
McCoy, Sean T. ;
Bergerson, Joule A. .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (06) :3129-3142
[38]   Scale-up of microstructured Fischer-Tropsch reactors - status and perspectives [J].
Pfeifer, Peter ;
Schmidt, Sebastian ;
Betzner, Florian ;
Kollmann, Max ;
Loewert, Marcel ;
Boeltken, Tim ;
Piermartini, Paolo .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2022, 36
[39]   Maximizing the profitability of integrated Fischer-Tropsch GTL process with ammonia and urea synthesis using response surface methodology [J].
Ziaei, Mohammad ;
Panahi, Mehdi ;
Fanaei, Mohammad Ali ;
Rafiee, Ahmad ;
Khalilpour, Kaveh R. .
JOURNAL OF CO2 UTILIZATION, 2020, 35 :14-27
[40]   The role of carboxylic acid in cobalt Fischer-Tropsch synthesis catalyst deactivation [J].
Kistamurthy, D. ;
Saib, A. M. ;
Moodley, D. J. ;
Preston, H. ;
Ciobica, I. M. ;
van Rensburg, W. Janse ;
Niemantsverdriet, J. W. ;
Weststrate, C. J. .
CATALYSIS TODAY, 2016, 275 :127-134