Maximum likelihood estimation for an observation driven model for Poisson counts

被引:27
作者
Davis, RA [1 ]
Dunsmuir, WTM
Streett, SB
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Univ New S Wales, Dept Stat, Sydney, NSW, Australia
[3] Natl Inst Stand & Technol, Stat Engn Div, Boulder, CO USA
基金
美国国家科学基金会;
关键词
observation-driven model; Poisson valued time series;
D O I
10.1007/s11009-005-1480-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with an observation-driven model for time series of counts whose conditional distribution given past observations follows a Poisson distribution.This class of models is capable of modeling a wide range of dependence structures and is readily estimated using an approximation to the likelihood function. Recursive formulae for carrying out maximum likelihood estimation are provided and the technical components required for establishing a central limit theorem of the maximum likelihood estimates are given in a special case.
引用
收藏
页码:149 / 159
页数:11
相关论文
共 4 条
[1]  
Davis RA, 1999, STAT TEXTB MONOG, V158, P63
[2]   Observation-driven models for Poisson counts [J].
Davis, RA ;
Dunsmuir, WTM ;
Streett, SB .
BIOMETRIKA, 2003, 90 (04) :777-790
[3]   M-ESTIMATION FOR AUTOREGRESSIONS WITH INFINITE VARIANCE [J].
DAVIS, RA ;
KNIGHT, K ;
LIU, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 40 (01) :145-180
[4]  
Hall P., 1980, Martingale Limit Theory and Its Application