MOTS: Multi-Object Tracking and Segmentation

被引:306
|
作者
Voigtlaender, Paul [1 ]
Krause, Michael [1 ]
Osep, Aljosa [1 ]
Luiten, Jonathon [1 ]
Sekar, Berin Balachandar Gnana [1 ]
Geiger, Andreas [2 ,3 ]
Leibe, Bastian [1 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] MPI Intelligent Syst, Tubingen, Germany
[3] Univ Tubingen, Tubingen, Germany
关键词
D O I
10.1109/CVPR.2019.00813
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper extends the popular task of multi-object tracking to multi-object trackingand segmentation(MOTS). Towards this goal, we create dense pixel-level annotations for two existing tracking datasets using a semi-automatic annotation procedure. Our new annotations comprise 65,213 pixel masks for 977 distinct objects (carsandpedestrians) in 10,870 video frames. For evaluation, we extend existing multi-object tracking metrics to this new task. Moreover we propose a new baseline method which jointly addressesdetection, tracking, and segmentation with a single convolutional network. We demonstrate the value of our datasets by achieving improvements in performance when training on MOTS annotations. We believe that our datasets, metrics and baseline will become a valuable resource towards developing multi-object tracking approaches that go beyond 2D bounding boxes. We make our annotations, code, and models available at h t tps: //www.vision.rwth aachen.de/page/mots.
引用
收藏
页码:7934 / 7943
页数:10
相关论文
共 50 条
  • [1] HOW INCOMPLETELY SEGMENTED INFORMATION AFFECTS MULTI-OBJECT TRACKING AND SEGMENTATION (MOTS)
    Chou, Yu-Sheng
    Wang, Chien-Yao
    Lin, Shou-De
    Liao, Hong-Yuan Mark
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2086 - 2090
  • [2] Weakly Supervised Multi-Object Tracking and Segmentation
    Ruiz, Idoia
    Porzi, Lorenzo
    Bulo, Samuel Rota
    Kontschieder, Peter
    Serrat, Joan
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 125 - 133
  • [3] A Framework to Combine Multi-Object Video Segmentation and Tracking
    Nadeem, Sehr
    Rahman, Anis
    Butt, Asad A.
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 525 - 531
  • [4] Leveraging Weak Segmentation for Multi-object Tracking System
    Wang, JiaXin
    Ma, CuiXia
    Wang, Hao
    Wang, HongAn
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 63 - 68
  • [5] Multi-Object Tracking Based on Segmentation and Collision Avoidance
    Meng Zhao
    Junhui Wang
    Maoyong Cao
    Peirui Bai
    Hongyan Gu
    Mingtao Pei
    JournalofBeijingInstituteofTechnology, 2018, 27 (02) : 213 - 219
  • [6] Multi-Object Tracking, Segmentation and Validation in Thermal Images
    Muresan, Mircea Paul
    Danescu, Radu
    Nedevschi, Sergiu
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [7] An Object Point Set Inductive Tracker for Multi-Object Tracking and Segmentation
    Gao, Yan
    Xu, Haojun
    Zheng, Yu
    Li, Jie
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6083 - 6096
  • [8] Segmentation, Ordering and Multi-Object Tracking using Graphical Models
    Wang, Chaohui
    de La Gorce, Martin
    Paragios, Nikos
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 747 - 754
  • [9] Learning Multi-Object Tracking and Segmentation from Automatic Annotations
    Porzi, Lorenzo
    Hofinger, Markus
    Ruiz, Idoia
    Serrat, Joan
    Bulo, Samuel Rota
    Kontschieder, Peter
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6845 - 6854
  • [10] Multi-Object Tracking and Segmentation Via Neural Message Passing
    Guillem Brasó
    Orcun Cetintas
    Laura Leal-Taixé
    International Journal of Computer Vision, 2022, 130 : 3035 - 3053