Millimeter-Wave AlGaN/GaN HEMTs With 43.6% Power-Added-Efficiency at 40 GHz Fabricated by Atomic Layer Etching Gate Recess

被引:45
作者
Zhang, Yichuan [1 ,2 ]
Huang, Sen [1 ,2 ]
Wei, Ke [1 ,2 ]
Zhang, Sheng [1 ]
Wang, Xinhua [1 ]
Zheng, Yingkui [1 ]
Liu, Guoguo [1 ]
Chen, Xiaojuan [1 ]
Li, Yankui [1 ]
Liu, Xinyu [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Microelect Devices & Integrated Technol, Inst Microelect, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Inst Microelect, Beijing 100049, Peoples R China
关键词
HEMTs; MODFETs; Logic gates; Aluminum gallium nitride; Wide band gap semiconductors; Plasmas; Millimeter wave technology; GaN; high electron mobility transistors (HEMTs); millimeter-wave; atomic layer etching; gate recess; power-added-efficiency; RF PERFORMANCE; MIS-HEMTS; TECHNOLOGY; GANHEMTS;
D O I
10.1109/LED.2020.2984663
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low damage atomic layer etching (ALE) gate recess is developed for fabrication of millimeter-wave AlGaN/GaN high-electron-mobility transistors (HEMTs). Plasma ion induced bombardments to the AlGaN barrier is effectively suppressed by the ALE recess, contributing to a well-controlled recessed surface morphology. The suppressed lattice damage to AlGaN/GaN heterostructure is also reflected by a significantly reduced gate leakage as well as an invisible threshold voltage shift associated with damage induced traps. With a 0.15- $\mu \text{m}$ T-gate fabrication technology, a high power-gain cutoff frequency ${f}_{\text {MAX}}$ of 205 GHz has been achieved. The ALE-recessed AlGaN/GaN HEMTs exhibits a record high power-added-efficiency (PAE) of 43.6% at 40 GHz in a continuous-wave mode. The associated gain and output power density are also remarkably improved compared with controlled HEMTs with conventional gate recess process.
引用
收藏
页码:701 / 704
页数:4
相关论文
共 30 条
  • [1] Plasma atomic layer etching using conventional plasma equipment
    Agarwal, Ankur
    Kushner, Mark J.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (01): : 37 - 50
  • [2] [Anonymous], 2014, IEDM
  • [3] Cl2/Ar based atomic layer etching of AlGaN layers
    Aroulanda, Sebastien
    Patard, Olivier
    Altuntas, Philippe
    Michel, Nicolas
    Pereira, Jorge
    Lacam, Cedric
    Gamarra, Piero
    Delage, Sylvain L.
    Defrance, Nicolas
    de Jaeger, Jean-Claude
    Gaquiere, Christophe
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2019, 37 (04):
  • [4] ICP-CVD SiN Passivation for High-Power RF InAlGaN/GaN/SiC HEMT
    Aubry, R.
    Jacquet, J. C.
    Oualli, M.
    Patard, O.
    Piotrowicz, S.
    Chartier, E.
    Michel, N.
    Xuan, L. Trinh
    Lancereau, D.
    Potier, C.
    Magis, M.
    Gamarra, P.
    Lacam, C.
    Tordjman, M.
    Jardel, O.
    Dua, C.
    Delage, S. L.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) : 629 - 632
  • [5] Chéron J, 2015, 2015 10TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC), P262, DOI 10.1109/EuMIC.2015.7345119
  • [6] AlGaN/GaN HEMT With 300-GHz fmax
    Chung, Jinwook W.
    Hoke, William E.
    Chumbes, Eduardo M.
    Palacios, Tomas
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (03) : 195 - 197
  • [7] High-Power Ka-Band Performance of AlInN/GaN HEMT With 9.8-nm-Thin Barrier
    Crespo, A.
    Bellot, M. M.
    Chabak, K. D.
    Gillespie, J. K.
    Jessen, G. H.
    Miller, V.
    Trejo, M.
    Via, G. D.
    Walker, D. E., Jr.
    Winningham, B. W.
    Smith, H. E.
    Cooper, T. A.
    Gao, X.
    Guo, S.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (01) : 2 - 4
  • [8] Di Giacomo-Brunel V, 2018, EUR MICROW INTEGRAT, P1, DOI 10.23919/EuMIC.2018.8539905
  • [9] SiNx/InAlN/AlN/GaN MIS-HEMTs With 10.8 THz . V Johnson Figure of Merit
    Downey, Brian P.
    Meyer, David J.
    Katzer, D. Scott
    Roussos, Jason A.
    Pan, Ming
    Gao, Xiang
    [J]. IEEE ELECTRON DEVICE LETTERS, 2014, 35 (05) : 527 - 529
  • [10] Gate-Recessed Normally OFF GaN MOSHEMT With High-Temperature Oxidation/Wet Etching Using LPCVD Si3N4 as the Mask
    Gao, Jingnan
    Jin, Yufeng
    Hao, Yilong
    Xie, Bing
    Wen, Cheng P.
    Shen, Bo
    Wang, Maojun
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (05) : 1728 - 1733