Millimeter-Wave AlGaN/GaN HEMTs With 43.6% Power-Added-Efficiency at 40 GHz Fabricated by Atomic Layer Etching Gate Recess

被引:49
作者
Zhang, Yichuan [1 ,2 ]
Huang, Sen [1 ,2 ]
Wei, Ke [1 ,2 ]
Zhang, Sheng [1 ]
Wang, Xinhua [1 ]
Zheng, Yingkui [1 ]
Liu, Guoguo [1 ]
Chen, Xiaojuan [1 ]
Li, Yankui [1 ]
Liu, Xinyu [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Microelect Devices & Integrated Technol, Inst Microelect, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Inst Microelect, Beijing 100049, Peoples R China
关键词
HEMTs; MODFETs; Logic gates; Aluminum gallium nitride; Wide band gap semiconductors; Plasmas; Millimeter wave technology; GaN; high electron mobility transistors (HEMTs); millimeter-wave; atomic layer etching; gate recess; power-added-efficiency; RF PERFORMANCE; MIS-HEMTS; TECHNOLOGY; GANHEMTS;
D O I
10.1109/LED.2020.2984663
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low damage atomic layer etching (ALE) gate recess is developed for fabrication of millimeter-wave AlGaN/GaN high-electron-mobility transistors (HEMTs). Plasma ion induced bombardments to the AlGaN barrier is effectively suppressed by the ALE recess, contributing to a well-controlled recessed surface morphology. The suppressed lattice damage to AlGaN/GaN heterostructure is also reflected by a significantly reduced gate leakage as well as an invisible threshold voltage shift associated with damage induced traps. With a 0.15- $\mu \text{m}$ T-gate fabrication technology, a high power-gain cutoff frequency ${f}_{\text {MAX}}$ of 205 GHz has been achieved. The ALE-recessed AlGaN/GaN HEMTs exhibits a record high power-added-efficiency (PAE) of 43.6% at 40 GHz in a continuous-wave mode. The associated gain and output power density are also remarkably improved compared with controlled HEMTs with conventional gate recess process.
引用
收藏
页码:701 / 704
页数:4
相关论文
共 30 条
[1]   Plasma atomic layer etching using conventional plasma equipment [J].
Agarwal, Ankur ;
Kushner, Mark J. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (01) :37-50
[2]  
[Anonymous], 2014, PROC IEEE INT ELECT, DOI DOI 10.1109/IEDM.2014.7047071
[3]   Cl2/Ar based atomic layer etching of AlGaN layers [J].
Aroulanda, Sebastien ;
Patard, Olivier ;
Altuntas, Philippe ;
Michel, Nicolas ;
Pereira, Jorge ;
Lacam, Cedric ;
Gamarra, Piero ;
Delage, Sylvain L. ;
Defrance, Nicolas ;
de Jaeger, Jean-Claude ;
Gaquiere, Christophe .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2019, 37 (04)
[4]   ICP-CVD SiN Passivation for High-Power RF InAlGaN/GaN/SiC HEMT [J].
Aubry, R. ;
Jacquet, J. C. ;
Oualli, M. ;
Patard, O. ;
Piotrowicz, S. ;
Chartier, E. ;
Michel, N. ;
Xuan, L. Trinh ;
Lancereau, D. ;
Potier, C. ;
Magis, M. ;
Gamarra, P. ;
Lacam, C. ;
Tordjman, M. ;
Jardel, O. ;
Dua, C. ;
Delage, S. L. .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) :629-632
[5]  
Chéron J, 2015, 2015 10TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC), P262, DOI 10.1109/EuMIC.2015.7345119
[6]   AlGaN/GaN HEMT With 300-GHz fmax [J].
Chung, Jinwook W. ;
Hoke, William E. ;
Chumbes, Eduardo M. ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (03) :195-197
[7]   High-Power Ka-Band Performance of AlInN/GaN HEMT With 9.8-nm-Thin Barrier [J].
Crespo, A. ;
Bellot, M. M. ;
Chabak, K. D. ;
Gillespie, J. K. ;
Jessen, G. H. ;
Miller, V. ;
Trejo, M. ;
Via, G. D. ;
Walker, D. E., Jr. ;
Winningham, B. W. ;
Smith, H. E. ;
Cooper, T. A. ;
Gao, X. ;
Guo, S. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (01) :2-4
[8]  
Di Giacomo-Brunel V, 2018, EUR MICROW INTEGRAT, P1, DOI 10.23919/EuMIC.2018.8539905
[9]   SiNx/InAlN/AlN/GaN MIS-HEMTs With 10.8 THz . V Johnson Figure of Merit [J].
Downey, Brian P. ;
Meyer, David J. ;
Katzer, D. Scott ;
Roussos, Jason A. ;
Pan, Ming ;
Gao, Xiang .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (05) :527-529
[10]   Gate-Recessed Normally OFF GaN MOSHEMT With High-Temperature Oxidation/Wet Etching Using LPCVD Si3N4 as the Mask [J].
Gao, Jingnan ;
Jin, Yufeng ;
Hao, Yilong ;
Xie, Bing ;
Wen, Cheng P. ;
Shen, Bo ;
Wang, Maojun .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (05) :1728-1733