Verifying the implicitization formulae for degree n rational Bezier curves

被引:0
作者
Wang, GJ
Sederberg, TW
机构
[1] Brigham Young Univ, Dept Comp Sci, Provo, UT 84602 USA
[2] Zhejiang Univ, Dept Appl Math, Hangzhou 310027, Peoples R China
关键词
rational Bezier curve; implicitization; resultant; de Casteljau algorithm;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a continuation of short communication([1]). In [1] a verification of the implicitization equation for degree two rational Bezier curves is presented which does not require the use of resultants. This paper presents these verifications in the general cases, i.e., for degree n rational Bezier curves. Thus some interesting interplay between the structure of the n x n implicitization matrix and the de Casteljau algorithm is revealed.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 6 条
  • [1] Abramowitz M., 1970, HDB MATH FUNCTIONS
  • [2] Farin G., 1990, CURVES SURFACES COMP
  • [3] Farin GeraldE., 1991, NURBS for Curve and Surface Design, DOI [10.5555/531858, DOI 10.5555/531858]
  • [4] Goldman R. N., 1984, Computer-Aided Geometric Design, V1, P327, DOI 10.1016/0167-8396(84)90020-7
  • [5] IMPLICIT REPRESENTATION OF PARAMETRIC CURVES AND SURFACES
    SEDERBERG, TW
    ANDERSON, DC
    GOLDMAN, RN
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 28 (01): : 72 - 84
  • [6] A SIMPLE VERIFICATION OF THE IMPLICITIZATION FORMULAS FOR BEZIER CURVES
    SEDERBERG, TW
    WANG, GJ
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (02) : 225 - 228