Oxygen-Intercalated CuFeO2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production

被引:126
作者
Jang, Youn Jeong [1 ]
Park, Yoon Bin [1 ]
Kim, Hyo Eun [2 ]
Choi, Yo Han [3 ]
Choi, Sun Hee [4 ]
Lee, Jae Sung [2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, Ulsan 689798, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Pohang Accelerator Lab PAL, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
PHOTOELECTROCHEMICAL WATER REDUCTION; VISIBLE-LIGHT IRRADIATION; ARTIFICIAL PHOTOSYNTHESIS; OXIDE; DELAFOSSITE; OXIDATION; HEMATITE; EVOLUTION; CO2; ELECTROCATALYST;
D O I
10.1021/acs.chemmater.6b00460
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Delafossite CuFeO2 is a promising photocathode material for solar hydrogen production, but its performance is low because of poor charge transport properties. When the prepared CuFeO2 electrode is annealed by hybrid microwave annealing (HMA), its photoelectrochemical water reduction activity increases by more than 4 times (-1.3 mA cm(-2) @ 0.4 V-RHE), while the conventional thermal annealing (CTA) improves the performance by only 2 times (-0.62 mA cm(-2) @0.4 V-RHE). The postannealing of the electrode intercalates extra oxygen into the CuFeO2 lattice to form CuFeO2+1.5 delta, which increases the charge carrier density and thus improves charge transport properties. The oxygen intercalation with HMA takes place more uniformly over the whole solid and is more effective than CTA. In addition, HMA post treated CuFeO2 is modified with a NiFe-layered double hydroxide/reduced graphene oxide electrocatalyst, which exhibits a high photoactivity of -2.4 mA cm(-2) @ 0.4 V-RHE, unprecedented for CuFeO2-based photocathodes.
引用
收藏
页码:6054 / 6061
页数:8
相关论文
共 43 条
[21]   Synthesis and characterization of CuFeO2+δ delafossite powders [J].
Mugnier, E ;
Barnabé A ;
Tailhades, P .
SOLID STATE IONICS, 2006, 177 (5-6) :607-612
[22]  
Pabst A, 1938, AM MINERAL, V23, P46
[23]  
Paracchino A, 2011, NAT MATER, V10, P456, DOI [10.1038/nmat3017, 10.1038/NMAT3017]
[24]   Synthesis of 3R-CuMO2+δ (M = Ga, Sc, In) [J].
Park, S ;
Keszler, DA .
JOURNAL OF SOLID STATE CHEMISTRY, 2003, 173 (02) :355-358
[25]   The crystal structures of hematite and corundum [J].
Pauling, L ;
Hendricks, SB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1925, 47 :781-790
[26]   Oxidation of polycrystalline copper thin films at ambient conditions [J].
Platzman, Ilia ;
Brener, Reuven ;
Haick, Hossam ;
Tannenbaum, Rina .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (04) :1101-1108
[27]   Improving charge collection with delafossite photocathodes: a host-guest CuAlO2/CuFeO2 approach [J].
Prevot, Mathieu S. ;
Li, Yang ;
Guijarro, Nestor ;
Sivula, Kevin .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (08) :3018-3026
[28]   Enhancing the Performance of a Robust Sol-Gel-Processed p-Type Delafossite CuFeO2 Photocathode for Solar Water Reduction [J].
Prevot, Mathieu S. ;
Guijarro, Nestor ;
Sivula, Kevin .
CHEMSUSCHEM, 2015, 8 (08) :1359-1367
[29]   Photoelectrochemical Tandem Cells for Solar Water Splitting [J].
Prevot, Mathieu S. ;
Sivula, Kevin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (35) :17879-17893
[30]  
PREWITT CT, 1971, INORG CHEM, V10, P719