Systems Pharmacology Dissection of Cholesterol Regulation Reveals Determinants of Large Pharmacodynamic Variability between Cell Lines

被引:15
作者
Blattmann, Peter [1 ]
Henriques, David [2 ]
Zimmermann, Michael [1 ,6 ]
Frommelt, Fabian [1 ]
Sauer, Uwe [1 ]
Saez-Rodriguez, Julio [3 ,4 ]
Aebersold, Ruedi [1 ,5 ]
机构
[1] Swiss Fed Inst Technol, Inst Mol Syst Biol, Dept Biol, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
[2] Spanish Council Sci Res, CSIC, IIM, Bioproc Engn Grp, C Eduardo Cabello 6, Vigo 36208, Spain
[3] Rhein Westfal TH Aachen, Fac Med, Joint Res Ctr Computat Biomed JRC COMBINE, MTZ Pauwelstr 19, D-52074 Aachen, Germany
[4] European Bioinformat Inst, European Mol Biol Lab, Wellcome Trust Genome Campus, Cambridge CB10 1SD, England
[5] Univ Zurich, Fac Sci, Zurich, Switzerland
[6] Yale Univ, Sch Med, Dept Microbial Pathogenesis, New Haven, CT 06510 USA
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
HIGH-THROUGHPUT; METABOLISM; LIVER; HOMEOSTASIS; MODELS; ATORVASTATIN; INTEGRATION; EXPRESSION; RECEPTORS; REDUCTION;
D O I
10.1016/j.cels.2017.11.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In individuals, heterogeneous drug-response phenotypes result from a complex interplay of dose, drug specificity, genetic background, and environmental factors, thus challenging our understanding of the underlying processes and optimal use of drugs in the clinical setting. Here, we use mass-spectrometry-based quantification of molecular response phenotypes and logic modeling to explain drug-response differences in a panel of cell lines. We apply this approach to cellular cholesterol regulation, a biological process with high clinical relevance. From the quantified molecular phenotypes elicited by various targeted pharmacologic or genetic treatments, we generated cell-line-specific models that quantified the processes beneath the idiotypic intracellular drug responses. The models revealed that, in addition to drug uptake and metabolism, further cellular processes displayed significant pharmacodynamic response variability between the cell lines, resulting in cell-line-specific drug-response phenotypes. This study demonstrates the importance of integrating different types of quantitative systems-level molecular measurements with modeling to understand the effect of pharmacological perturbations on complex biological processes.
引用
收藏
页码:604 / +
页数:23
相关论文
共 69 条
  • [21] Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis
    Gillet, Ludovic C.
    Navarro, Pedro
    Tate, Stephen
    Roest, Hannes
    Selevsek, Nathalie
    Reiter, Lukas
    Bonner, Ron
    Aebersold, Ruedi
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (06)
  • [22] Liver X receptors in lipid metabolism: opportunities for drug discovery
    Hong, Cynthia
    Tontonoz, Peter
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2014, 13 (06) : 433 - 444
  • [23] SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
    Horton, JD
    Goldstein, JL
    Brown, MS
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (09) : 1125 - 1131
  • [24] Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes
    Horton, JD
    Shah, NA
    Warrington, JA
    Anderson, NN
    Park, SW
    Brown, MS
    Goldstein, JL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (21) : 12027 - 12032
  • [25] A Landscape of Pharmacogenomic Interactions in Cancer
    Iorio, Francesco
    Knijnenburg, Theo A.
    Vis, Daniel J.
    Bignell, Graham R.
    Menden, Michael P.
    Schubert, Michael
    Aben, Nanne
    Goncalves, Emanuel
    Barthorpe, Syd
    Lightfoot, Howard
    Cokelaer, Thomas
    Greninger, Patricia
    van Dyk, Ewald
    Chang, Han
    de Silva, Heshani
    Heyn, Holger
    Deng, Xianming
    Egan, Regina K.
    Liu, Qingsong
    Mironenko, Tatiana
    Mitropoulos, Xeni
    Richardson, Laura
    Wang, Jinhua
    Zhang, Tinghu
    Moran, Sebastian
    Sayols, Sergi
    Soleimani, Maryam
    Tamborero, David
    Lopez-Bigas, Nuria
    Ross-Macdonald, Petra
    Esteller, Manel
    Gray, Nathanael S.
    Haber, Daniel A.
    Stratton, Michael R.
    Benes, Cyril H.
    Wessels, Lodewyk F. A.
    Saez-Rodriguez, Julio
    McDermott, Ultan
    Garnett, Mathew J.
    [J]. CELL, 2016, 166 (03) : 740 - 754
  • [26] Characterization of drug-induced transcriptional modules: towards drug repositioning and functional understanding
    Iskar, Murat
    Zeller, Georg
    Blattmann, Peter
    Campillos, Monica
    Kuhn, Michael
    Kaminska, Katarzyna H.
    Runz, Heiko
    Gavin, Anne-Claude
    Pepperkok, Rainer
    van Noort, Vera
    Bork, Peer
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2013, 9
  • [27] ProteoWizard: open source software for rapid proteomics tools development
    Kessner, Darren
    Chambers, Matt
    Burke, Robert
    Agusand, David
    Mallick, Parag
    [J]. BIOINFORMATICS, 2008, 24 (21) : 2534 - 2536
  • [28] iPortal: the swiss grid proteomics portal: Requirements and new features based on experience and usability considerations
    Kunszt, Peter
    Blum, Lorenz
    Hullar, Bela
    Schmid, Emanuel
    Srebniak, Adam
    Wolski, Witold
    Rinn, Bernd
    Elmer, Franz-Josef
    Ramakrishnan, Chandrasekhar
    Quandt, Andreas
    Malmstroem, Lars
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (02) : 433 - 445
  • [29] Human SRMAtlas: A Resource of Targeted Assays to Quantify the Complete Human Proteome
    Kusebauch, Ulrike
    Campbell, David S.
    Deutsch, Eric W.
    Chu, Caroline S.
    Spicer, Douglas A.
    Brusniak, Mi-Youn
    Slagel, Joseph
    Sun, Zhi
    Stevens, Jeffrey
    Grimes, Barbara
    Shteynberg, David
    Hoopmann, Michael R.
    Blattmann, Peter
    Ratushny, Alexander V.
    Rinner, Oliver
    Picotti, Paola
    Carapito, Christine
    Huang, Chung-Ying
    Kapousouz, Meghan
    Lam, Henry
    Tran, Tommy
    Demir, Emek
    Aitchison, John D.
    Sander, Chris
    Hood, Leroy
    Aebersold, Ruedi
    Moritz, Robert L.
    [J]. CELL, 2016, 166 (03) : 766 - 778
  • [30] The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease
    Lamb, Justin
    Crawford, Emily D.
    Peck, David
    Modell, Joshua W.
    Blat, Irene C.
    Wrobel, Matthew J.
    Lerner, Jim
    Brunet, Jean-Philippe
    Subramanian, Aravind
    Ross, Kenneth N.
    Reich, Michael
    Hieronymus, Haley
    Wei, Guo
    Armstrong, Scott A.
    Haggarty, Stephen J.
    Clemons, Paul A.
    Wei, Ru
    Carr, Steven A.
    Lander, Eric S.
    Golub, Todd R.
    [J]. SCIENCE, 2006, 313 (5795) : 1929 - 1935