Systems Pharmacology Dissection of Cholesterol Regulation Reveals Determinants of Large Pharmacodynamic Variability between Cell Lines

被引:15
作者
Blattmann, Peter [1 ]
Henriques, David [2 ]
Zimmermann, Michael [1 ,6 ]
Frommelt, Fabian [1 ]
Sauer, Uwe [1 ]
Saez-Rodriguez, Julio [3 ,4 ]
Aebersold, Ruedi [1 ,5 ]
机构
[1] Swiss Fed Inst Technol, Inst Mol Syst Biol, Dept Biol, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
[2] Spanish Council Sci Res, CSIC, IIM, Bioproc Engn Grp, C Eduardo Cabello 6, Vigo 36208, Spain
[3] Rhein Westfal TH Aachen, Fac Med, Joint Res Ctr Computat Biomed JRC COMBINE, MTZ Pauwelstr 19, D-52074 Aachen, Germany
[4] European Bioinformat Inst, European Mol Biol Lab, Wellcome Trust Genome Campus, Cambridge CB10 1SD, England
[5] Univ Zurich, Fac Sci, Zurich, Switzerland
[6] Yale Univ, Sch Med, Dept Microbial Pathogenesis, New Haven, CT 06510 USA
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
HIGH-THROUGHPUT; METABOLISM; LIVER; HOMEOSTASIS; MODELS; ATORVASTATIN; INTEGRATION; EXPRESSION; RECEPTORS; REDUCTION;
D O I
10.1016/j.cels.2017.11.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In individuals, heterogeneous drug-response phenotypes result from a complex interplay of dose, drug specificity, genetic background, and environmental factors, thus challenging our understanding of the underlying processes and optimal use of drugs in the clinical setting. Here, we use mass-spectrometry-based quantification of molecular response phenotypes and logic modeling to explain drug-response differences in a panel of cell lines. We apply this approach to cellular cholesterol regulation, a biological process with high clinical relevance. From the quantified molecular phenotypes elicited by various targeted pharmacologic or genetic treatments, we generated cell-line-specific models that quantified the processes beneath the idiotypic intracellular drug responses. The models revealed that, in addition to drug uptake and metabolism, further cellular processes displayed significant pharmacodynamic response variability between the cell lines, resulting in cell-line-specific drug-response phenotypes. This study demonstrates the importance of integrating different types of quantitative systems-level molecular measurements with modeling to understand the effect of pharmacological perturbations on complex biological processes.
引用
收藏
页码:604 / +
页数:23
相关论文
共 69 条
  • [1] Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes
    Abelin, Jennifer G.
    Patel, Jinal
    Lu, Xiaodong
    Feeney, Caitlin M.
    Fagbami, Lola
    Creech, Amanda L.
    Hu, Roger
    Lam, Daniel
    Davison, Desiree
    Pino, Lindsay
    Qiao, Jana W.
    Kuhn, Eric
    Officer, Adam
    Li, Jianxue
    Abbatiello, Susan
    Subramanian, Aravind
    Sidman, Richard
    Snyder, Evan
    Carr, Steven A.
    Jaffe, Jacob D.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2016, 15 (05) : 1622 - 1641
  • [2] Endogenous Gene and Protein Expression of Drug-Transporting Proteins in Cell Lines Routinely Used in Drug Discovery Programs
    Ahlin, Gustav
    Hilgendorf, Constanze
    Karlsson, Johan
    Szigyarto, Cristina Al-Khalili
    Uhlen, Mathias
    Artursson, Per
    [J]. DRUG METABOLISM AND DISPOSITION, 2009, 37 (12) : 2275 - 2283
  • [3] Transcriptional activities of nuclear SREBP-1a,-1c, and-2 to different target promoters of lipogenic and cholesterogenic genes
    Amemiya-Kudo, M
    Shimano, H
    Hasty, AH
    Yahagi, N
    Yoshikawa, T
    Matsuzaka, T
    Okazaki, H
    Tamura, Y
    Iizuka, Y
    Ohashi, K
    Osuga, J
    Harada, K
    Gotoda, T
    Sato, R
    Kimura, S
    Ishibashi, S
    Yamada, N
    [J]. JOURNAL OF LIPID RESEARCH, 2002, 43 (08) : 1220 - 1235
  • [4] Systems Biology and Pharmacology
    Berg, J. M.
    Rogers, M. E.
    Lyster, P. M.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2010, 88 (01) : 17 - 19
  • [5] A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway
    Bhattacharya, Bonhi S.
    Sweby, Peter K.
    Minihane, Anne-Marie
    Jackson, Kim G.
    Tindall, Marcus J.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2014, 349 : 150 - 162
  • [6] SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools
    Blattmann, Peter
    Heusel, Moritz
    Aebersold, Ruedi
    [J]. PLOS ONE, 2016, 11 (04):
  • [7] RNAi-Based Functional Profiling of Loci from Blood Lipid Genome-Wide Association Studies Identifies Genes with Cholesterol-Regulatory Function
    Blattmann, Peter
    Schuberth, Christian
    Pepperkok, Rainer
    Runz, Heiko
    [J]. PLOS GENETICS, 2013, 9 (02):
  • [8] Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics
    Bordbar, Aarash
    McCloskey, Douglas
    Zielinski, Daniel C.
    Sonnenschein, Nikolaus
    Jamshidi, Neema
    Palsson, Bernhard O.
    [J]. CELL SYSTEMS, 2015, 1 (04) : 283 - 292
  • [9] Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL
    Brown, Michael S.
    Goldstein, Joseph L.
    [J]. JOURNAL OF LIPID RESEARCH, 2009, 50 : S15 - S27
  • [10] Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
    Calkin, Anna C.
    Tontonoz, Peter
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2012, 13 (04) : 213 - 224