A note on the gauge invariant uniqueness theorem for C*-correspondences

被引:6
作者
Kakariadis, Evgenios T. A. [1 ]
机构
[1] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
IDEAL STRUCTURE; TENSOR-ALGEBRAS; CUNTZ-PIMSNER; REPRESENTATIONS;
D O I
10.1007/s11856-016-1386-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a short proof of the gauge invariant uniqueness theorem for relative Cuntz-Pimsner algebras of C*-correspondences.
引用
收藏
页码:513 / 521
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2008, GRADUATE STUDIES MAT
[2]  
Arveson W., 1969, Acta Math, V123, P141, DOI 10.1007/BF02392388
[3]  
Doplicher S, 1998, B UNIONE MAT ITAL, V1B, P263
[4]  
Fowler NJ, 1999, INDIANA U MATH J, V48, P155
[5]   Representations of Cuntz-Pimsner algebras [J].
Fowler, NJ ;
Muhly, PS ;
Raeburn, I .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (03) :569-605
[6]   The ideal structure of Cuntz-Krieger algebras [J].
Huef, AA ;
Raeburn, I .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :611-624
[7]   Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules [J].
Kajiwara, T ;
Pinzari, C ;
Watatani, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :295-322
[8]  
Kakariadis ETA, 2013, MUENSTER J MATH, V6, P383
[9]   Tensor algebras of C*-correspondences and their C*-envelopes [J].
Katsoulis, EG ;
Kribs, DW .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (01) :226-233
[10]   On C*-algebras associated with C* -correspondences [J].
Katsura, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 217 (02) :366-401