Large refrigeration capacity in a Ni42Co8Mn37.7In12.3 magnetocaloric alloy

被引:23
作者
Cheng, Fei [1 ,2 ]
Gao, Lumei [1 ,2 ,3 ]
Wang, Yu [1 ,2 ]
Wang, Jiaotong [1 ,2 ]
Liao, Xiaoqi [1 ,2 ]
Yang, Sen [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Instrument Anal Ctr, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetocaloric effect; Shape memory alloy; Martensitic transformation; Entropy change; Refrigeration capacity; INDUCED PHASE-TRANSFORMATION; INDUCED SHAPE RECOVERY; ROOM-TEMPERATURE; NEGATIVE MAGNETORESISTANCE; MAGNETIC-PROPERTIES; CO;
D O I
10.1016/j.jmmm.2019.01.101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Ni-Mn-Z (Z = Sn, In, Sb, Ga) based alloys are considered as promising magnetic refrigeration materials due to its giant inverse magnetocaloric effect, simple preparation and low cost. In this work, the transformation behavior and magnetocaloric effect of Ni42Co8Mn37.7In12.3 polycrystalline alloy has been investigated. It is found that both the temperature-induced martensitic transformation and its associated field induced metamagnetic transition occur near the room temperature. The large magnetic entropy change Delta S-M of 14.30 J.K-1.kg(-1) and large refrigeration capacity RC of 549 J.K-1 are achieved under 6 T within the broad ambient working temperature range of 248-295 K. Its magnetocaloric performance is outstanding among a great number of reported Ni-Mn-Z based alloys.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 40 条
[1]   Large negative magnetoresistance in a ferromagnetic shape memory alloy:: Ni2+xMn1-xGa -: art. no. 202508 [J].
Biswas, C ;
Rawat, R ;
Barman, SR .
APPLIED PHYSICS LETTERS, 2005, 86 (20) :1-3
[2]   Large inverse magnetocaloric effect in Ni45Co5Mn37.5In12.5 single crystal above 300 K [J].
Bourgault, Daniel ;
Tillier, Jeremy ;
Courtois, Pierre ;
Maillard, Denis ;
Chaud, Xavier .
APPLIED PHYSICS LETTERS, 2010, 96 (13)
[3]  
Brock J, 2017, J MAGN MAGN MATER, V425, P1, DOI 10.1016/j.jmmm.2016.10.149
[4]   Effect of grain constraint on the field requirements for magnetocaloric effect in Ni45Co5Mn40Sn10 melt-spun ribbons [J].
Bruno, N. M. ;
Huang, Y. J. ;
Dennis, C. L. ;
Li, J. G. ;
Shull, R. D. ;
Ross, J. H., Jr. ;
Chumlyakov, Y. I. ;
Karaman, I. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (07)
[5]   Thermomagnetic history dependence of magnetocaloric effect in Ni50Mn34In16 [J].
Chattopadhyay, M. K. ;
Sharma, V. K. ;
Roy, S. B. .
APPLIED PHYSICS LETTERS, 2008, 92 (02)
[6]   Magnetoresistance and magnetocaloric properties involving strong metamagnetic behavior in Fe-doped Ni45(Co1-xFex)5Mn36.6In13.4 alloys [J].
Chen, L. ;
Hu, F. X. ;
Wang, J. ;
Bao, L. F. ;
Sun, J. R. ;
Shen, B. G. ;
Yin, J. H. ;
Pan, L. Q. .
APPLIED PHYSICS LETTERS, 2012, 101 (01)
[7]   Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys [J].
Cong, D. Y. ;
Roth, S. ;
Schultz, L. .
ACTA MATERIALIA, 2012, 60 (13-14) :5335-5351
[8]   Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni-Mn-Sb [J].
Du, J. ;
Zheng, Q. ;
Ren, W. J. ;
Feng, W. J. ;
Liu, X. G. ;
Zhang, Z. D. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (18) :5523-5526
[9]   From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys [J].
Fabbrici, S. ;
Kamarad, J. ;
Arnold, Z. ;
Casoli, F. ;
Paoluzi, A. ;
Bolzoni, F. ;
Cabassi, R. ;
Solzi, M. ;
Porcari, G. ;
Pernechele, C. ;
Albertini, F. .
ACTA MATERIALIA, 2011, 59 (01) :412-419
[10]   Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials [J].
Gottschall, Tino ;
Skokov, Konstantin P. ;
Benke, Dimitri ;
Gruner, Markus E. ;
Gutfleisch, Oliver .
PHYSICAL REVIEW B, 2016, 93 (18)