Radial solutions for a prescribed mean curvature equation with exponential nonlinearity
被引:10
|
作者:
Pan, Hongjing
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
Pan, Hongjing
[2
]
Xing, Ruixiang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
Xing, Ruixiang
[1
]
机构:
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Gelfand problem;
Prescribed mean curvature equation;
Time map;
Topological degree;
Radial solution;
Exponential nonlinearity;
LINEAR ELLIPTIC-EQUATIONS;
POSITIVE SOLUTIONS;
TIME MAPS;
EXISTENCE;
OPERATORS;
D O I:
10.1016/j.na.2011.08.010
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We establish an existence result for radial solutions for a prescribed mean curvature equation with exponential nonlinearity. Our methods are based on degree theory combined with a time map analysis. We also obtain two nonexistence results for positive solutions for more general f; one of them is not limited to radial solutions. (C) 2011 Elsevier Ltd. All rights reserved.
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Qiongzhou Univ, Dept Math, Hainan 572200, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Li, Weisheng
Liu, Zhaoli
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China