Two-dimensional impedance data analysis by the distribution of relaxation times

被引:26
作者
Mertens, Andreas [1 ,2 ,3 ]
Granwehr, Josef [1 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res Fundamental Electrochem, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Helmholtz Inst Munster HI MS Ion Energy Storage I, D-48149 Munster, Germany
[3] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
[4] Rhein Westfal TH Aachen, Inst Tech & Macromol Chem, D-52074 Aachen, Germany
关键词
Impedance; Distribution of relaxation times; Inductive feature; Resolution increase; Quantification; MULTIEXPONENTIAL DECAY DATA; UNIFORM-PENALTY INVERSION; REGULARIZATION METHOD; LAPLACE-TRANSFORM; SPECTROSCOPY DATA; DECONVOLUTION; CATHODES; SPECTRA; MODEL;
D O I
10.1016/j.est.2017.07.029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrochemical impedance spectroscopy of batteries and fuel cells suffers from ambiguity due to overlapping features of different electrochemical processes. One approach to mitigate this problem is the analysis of impedance data by the distribution of relaxation times (DRT) of the underlying physicochemical processes. In this work an evolution of DRT analysis using generalized Tikhonov regularization with a uniform penalty and an RC kernel is discussed. By conducting the transformation without discriminating or constraining the sign of the distribution and by using both the imaginary and the real part of the RC kernel it can be distinguished between impedance contributions of RQ-like physicochemical processes, pure ohmic resistances and inductances in the system under investigation. Furthermore, regularization can be simultaneously applied in a second, non-inverted dimension, which affords an increased resolution of the spectrum. The properties of the algorithm are demonstrated by analyzing synthetic impedance data. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:401 / 408
页数:8
相关论文
共 38 条
[1]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[2]  
[Anonymous], [No title captured]
[3]   Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides [J].
Aurbach, D ;
Levi, MD ;
Levi, E ;
Teller, H ;
Markovsky, B ;
Salitra, G ;
Heider, U ;
Heider, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3024-3034
[4]   A novel impedance spectrometer based on carrier function Laplace-transform of the response to arbitrary excitation [J].
Barsoukov, E ;
Ryu, SH ;
Lee, H .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 536 (1-2) :109-122
[5]   Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes [J].
Baumann, Frank S. ;
Fleig, Juergen ;
Habermeier, Hanns-Ulrich ;
Maier, Joachim .
SOLID STATE IONICS, 2006, 177 (11-12) :1071-1081
[6]   Uniform-penalty inversion of multiexponential decay data [J].
Borgia, GC ;
Brown, RJS ;
Fantazzini, P .
JOURNAL OF MAGNETIC RESONANCE, 1998, 132 (01) :65-77
[7]   Uniform-penalty inversion of multiexponential decay data -: II.: Data spacing, T2 data, systematic data errors, and diagnostics [J].
Borgia, GC ;
Brown, RJS ;
Fantazzini, P .
JOURNAL OF MAGNETIC RESONANCE, 2000, 147 (02) :273-285
[8]  
Büschel P, 2014, IEEE IMTC P, P901, DOI 10.1109/I2MTC.2014.6860872
[9]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[10]   Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach [J].
Ciucci, Francesco ;
Chen, Chi .
ELECTROCHIMICA ACTA, 2015, 167 :439-454