A Transient-Based Approach for Estimating the Electrical Parameters of a Lithium-ion Battery Model

被引:0
|
作者
Mandal, Lalit P. [1 ]
Cox, Robert W. [1 ]
机构
[1] UNC Charlotte, Dept Elect & Comp Engn, Charlotte, NC 28223 USA
来源
2011 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE) | 2011年
关键词
STATE-OF-CHARGE; IMPEDANCE MEASUREMENTS; MANAGEMENT-SYSTEMS; HEALTH; PACKS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper describes a transient-based approach for estimating the impedance parameters of a lumped-element electrical circuit model for a lithium-ion battery. In this methodology, a small test signal is superimposed on top of the battery load to trigger its transient dynamics. The resulting terminal voltage and current are measured, and a non-linear least-squares routine is used to estimate the parameters of the battery model. Experimental results obtained at consistent temperatures demonstrate that the parameter values depend on state-of-charge. The approach requires minimal hardware and could be used to form the basis of a robust on-line monitoring system.
引用
收藏
页码:2635 / 2640
页数:6
相关论文
共 50 条
  • [31] ANN approach to SOC estimation of Lithium-Ion Battery
    Imane, Chaoufi
    Fatiha, Zaghrat
    Asma, Benehmine
    Othmane, Abdelkhalek
    Brahim, Gasbaoui
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (08): : 198 - 200
  • [32] A comparative study of different online model parameters identification methods for lithium-ion battery
    ShuZhi Zhang
    XiongWen Zhang
    Science China Technological Sciences, 2021, 64 : 2312 - 2327
  • [33] Autonomous Characterization of Lithium-Ion Battery Model Parameters utilizing a Mathematical Optimization Methodology
    Astudillo, Galo D.
    Beiranvand, Hamzeh
    Krueger, Helge
    Hansen, Sandra
    Liserre, Marco
    Werlig, Christian
    Wuersig, Andreas
    2022 24TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'22 ECCE EUROPE), 2022,
  • [34] A comparative study of different online model parameters identification methods for lithium-ion battery
    Zhang, ShuZhi
    Zhang, XiongWen
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (10) : 2312 - 2327
  • [35] Model-based condition monitoring for lithium-ion batteries
    Kim, Taesic
    Wang, Yebin
    Fang, Huazhen
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    Qiao, Wei
    JOURNAL OF POWER SOURCES, 2015, 295 : 16 - 27
  • [36] Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online
    Ning, Bo
    Cao, Binggang
    Wang, Bin
    Zou, Zhongyue
    ENERGY, 2018, 153 : 732 - 742
  • [37] An adaptive state of charge estimation approach for lithium-ion series-connected battery system
    Peng, Simin
    Zhu, Xuelai
    Xing, Yinjiao
    Shi, Hongbing
    Cai, Xu
    Pecht, Michael
    JOURNAL OF POWER SOURCES, 2018, 392 : 48 - 59
  • [38] A New SOH Prediction Model for Lithium-ion Battery for Electric Vehicles
    Han, Huachun
    Xu, Haiping
    Yuan, Zengquan
    Shen, Yanling
    2014 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2014, : 997 - 1002
  • [39] Lithium-ion battery state of charge prediction based on machine learning approach
    Zazoum, Bouchaib
    ENERGY REPORTS, 2023, 9 : 1152 - 1158
  • [40] Lithium-Ion Battery SOC Estimation and Hardware-in-the-Loop Simulation Based on EKF
    Guo, Lin
    Li, Junqiu
    Fu, Zijian
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 2599 - 2604