Fixed Points of Multivalued G-Nonexpansive Mappings in Hadamard Spaces Endowed with Graphs

被引:2
作者
Panyanak, Bancha [1 ]
机构
[1] Chiang Mai Univ, Fac Sci, Data Sci Res Ctr, Dept Math, Chiang Mai 50200, Thailand
关键词
STRONG-CONVERGENCE; CAT(0); THEOREMS;
D O I
10.1155/2020/5849262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fixed-point theorem for multivalued G-nonexpansive mappings in Hadamard spaces is proved. The strong convergence theorems of Browder's and Halpern's iterations are also established. Our results generalize and improve the results of Tiammee et al. (2015), Alfuraidan and Khamsi (2015), Anakkamatee and Tongnoi (2019), and many others.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] Agarwal RP, 2009, TOPOL FIXED POINT TH, V6, P1, DOI 10.1007/978-0-387-75818-3_1
  • [2] Fixed points of monotone nonexpansive mappings on a hyperbolic metric space with a graph
    Alfuraidan, Monther Rashed
    Khamsi, Mohamed Amine
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [3] Anakkamatee W, 2019, THAI J MATH, V17, P775
  • [4] Banach S., 1922, FUND MATH, V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
  • [5] The contraction principle for set valued mappings on a metric space with a graph
    Beg, Ismat
    Butt, Asrna Rashid
    Radojevic, S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1214 - 1219
  • [6] Quasilinearization and curvature of Aleksandrov spaces
    Berg, I. D.
    Nikolaev, I. G.
    [J]. GEOMETRIAE DEDICATA, 2008, 133 (01) : 195 - 218
  • [7] Bridson M, 1999, METRIC SPACES NONPOS
  • [8] BROWDER FE, 1967, ARCH RATION MECH AN, V24, P82
  • [9] Brown K. S., 1989, BUILDINGS, DOI [10.1007/978-1-4612-1019-1, DOI 10.1007/978-1-4612-1019-1]
  • [10] Burago D., 2001, CRM P LECT NOTES, V33, DOI 10.1090/gsm/033