Convergence analysis of structure-preserving numerical methods for nonlinear Fokker-Planck equations with nonlocal interactions

被引:12
作者
Duan, Chenghua [1 ,2 ]
Chen, Wenbin [3 ,4 ]
Liu, Chun [5 ]
Wang, Cheng [6 ]
Zhou, Shenggao [7 ,8 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[4] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[5] IIT, Dept Appl Math, Chicago, IL 60616 USA
[6] Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
[7] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
[8] Shanghai Jiao Tong Univ, MOE LSC, Shanghai, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
convergence analysis; energy dissipation law; higher order asymptotic expansion; nonlocal Fokker-Planck equations; refined error estimate; rough error estimate; trajectory equation; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE SCHEME; CONVEX SPLITTING SCHEME; POROUS-MEDIUM EQUATION; ENTROPY DISSIPATION; CAHN; DISCRETIZATION; DIFFUSION; MODEL;
D O I
10.1002/mma.8015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of nonlinear Fokker-Planck equations with nonlocal interactions may include many important cases, such as porous medium equations with external potentials and aggregation-diffusion models. The trajectory equation of the Fokker-Plank equation can be derived based on an energetic variational approach. A structure-preserving numerical scheme that is mass conservative, energy stable, uniquely solvable, and positivity preserving at a theoretical level has also been designed in the previous work. Moreover, the numerical scheme is shown to satisfy the discrete energetic dissipation law and preserve steady states and has been observed to be second order accurate in space and first-order accurate time in various numerical experiments. In this work, we give the rigorous convergence analysis for the highly nonlinear numerical scheme. A careful higher order asymptotic expansion is needed to handle the highly nonlinear nature of the trajectory equation. In addition, two step error estimates (a rough estimate and a refined estimate) are necessary in the convergence proof. Different from a standard error estimate, the rough estimate is performed to control the nonlinear term. A few numerical results are also presented to verify the optimal convergence order and the preservation of equilibria.
引用
收藏
页码:3764 / 3781
页数:18
相关论文
共 47 条
[1]  
Bailo R, 2020, COMMUN MATH SCI, V18, P1259
[2]   CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION [J].
Baskaran, A. ;
Lowengrub, J. S. ;
Wang, C. ;
Wise, S. M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) :2851-2873
[3]   A non-Maxwellian steady distribution for one-dimensional granular media [J].
Benedetto, D ;
Caglioti, E ;
Carrillo, JA ;
Pulvirenti, M .
JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (5-6) :979-990
[4]   A FINITE VOLUME SCHEME FOR NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
Bessemoulin-Chatard, Marianne ;
Filbet, Francis .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05) :B559-B583
[5]   On an aggregation model with long and short range interactions [J].
Burger, Martin ;
Capasso, Vincenzo ;
Morale, Daniela .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (03) :939-958
[6]   Convergence of an entropic semi-discretization for nonlinear Fokker-Planck equations in Rd [J].
Carrillo, J. A. ;
Gualdani, M. P. ;
Juengel, A. .
PUBLICACIONS MATEMATIQUES, 2008, 52 (02) :413-433
[7]  
Carrillo JA, 2000, INDIANA U MATH J, V49, P113
[8]  
Carrillo JA, 2003, REV MAT IBEROAM, V19, P971
[9]   Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities [J].
Carrillo, JA ;
Jüngel, A ;
Markowich, PA ;
Toscani, G ;
Unterreiter, A .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (01) :1-82
[10]   Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms [J].
Carrillo, Jose A. ;
Ranetbauer, Helene ;
Wolfram, Marie-Therese .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 :186-202