Local Truncation Error of Low-Order Fractional Variational Integrators

被引:1
|
作者
Jimenez, Fernando [1 ]
Ober-Blobaum, Sina [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Pk Rd, Oxford OX1 3PJ, England
来源
GEOMETRIC SCIENCE OF INFORMATION | 2019年 / 11712卷
基金
英国工程与自然科学研究理事会;
关键词
Fractional variational integrators; Dissipative systems; Local truncation error;
D O I
10.1007/978-3-030-26980-7_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the local truncation error of the so-called fractional variational integrators, recently developed in [1,2] based on previous work by Riewe and Cresson [3,4]. These integrators are obtained through two main elements: the enlarging of the usual mechanical Lagrangian state space by the introduction of the fractional derivatives of the dynamical curves; and a discrete restricted variational principle, in the spirit of discrete mechanics and variational integrators [5]. The fractional variational integrators are designed for modelling fractional dissipative systems, which, in particular cases, reduce to mechanical systems with linear damping. All these elements are introduced in the paper. In addition, as original result, we prove (Sect. 3, Theorem2) the order of local truncation error of the fractional variational integrators with respect to the dynamics of mechanical systems with linear damping.
引用
收藏
页码:541 / 548
页数:8
相关论文
共 50 条
  • [1] Variational Discretizations: Discrete Tangent Bundles, Local Error Analysis, and Arbitrary Order Variational Integrators
    Patrick, George W.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1013 - 1016
  • [2] Design of Low Error Fractional Order IIR Digital Differentiators and Integrators
    Kansal, Shivam
    Upadhyay, Dharmendra K.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), 2017, : 132 - 136
  • [3] Fractional variational integrators for fractional variational problems
    Wang, Dongling
    Xiao, Aiguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 602 - 610
  • [4] ERROR ANALYSIS OF LOW-ORDER FILTERS AND UNDUALITY BETWEEN ERROR EQUATIONS OF LOW-ORDER FILTER AND SINGULAR CONTROL PROBLEM
    NAGATA, M
    SAWARAGI, Y
    INTERNATIONAL JOURNAL OF CONTROL, 1976, 23 (01) : 67 - 79
  • [5] Variational assimilation of POD low-order dynamical systems
    D'Adamo, Juan
    Papadakis, Nicolas
    Memin, Etienne
    Artana, Guillermo
    JOURNAL OF TURBULENCE, 2007, 8 (09): : 1 - 22
  • [6] A low-order approximation method for fractional order PID controllers
    Birs, Isabela R.
    Muresan, Cristina, I
    Ghita, Maria
    Ionescu, Clara
    De Keyser, Robin
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 6556 - 6561
  • [7] Variational integrators for fractional Birkhoffian systems
    He, Lin
    Wu, Huibin
    Mei, Fengxiang
    NONLINEAR DYNAMICS, 2017, 87 (04) : 2325 - 2334
  • [8] Variational integrators for fractional Birkhoffian systems
    Lin He
    Huibin Wu
    Fengxiang Mei
    Nonlinear Dynamics, 2017, 87 : 2325 - 2334
  • [9] Low-Order Harmonic Current Suppression Method Based on Adaptive Fractional-Order Capacitor Considering Parameters Error
    Lin, Zhile
    He, Liangzong
    Zhou, Hongyan
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (10) : 13074 - 13084
  • [10] Low-Order Representation of Robust Fractional-Order Controllers for Fractional-Order Interval Plants
    Mihaly, Vlad
    Susca, Mircea
    Dobra, Petru
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,