Functional brain connectivity in resting-state fMRI using phase and magnitude data

被引:19
作者
Chen, Zikuan [1 ,2 ]
Caprihan, Arvind [1 ,2 ]
Damaraju, Eswar [1 ,2 ]
Rachakonda, Srinivas [1 ,2 ]
Calhoun, Vince [1 ,2 ,3 ]
机构
[1] Mind Res Network, 1101 Yale Blvd NE, Albuquerque, NM 87106 USA
[2] LBERI, Albuquerque, NM 87106 USA
[3] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Brain function; fMRI magnitude; fMRI phase; Connectivity; Independent component analysis; Balanced functional connectivity; BALANCED EXCITATION; CORTICAL NETWORKS; INFORMATION; CORTEX; MODEL;
D O I
10.1016/j.jneumeth.2017.10.016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The output of BOLD fMRI consists of a pair of magnitude and phase components. While the magnitude data has been widely accepted for brain function analysis, we can also make use of the phase data (unwrapped) since this is a good representation of the internal magnetic field. In this work, we discuss the use of fMRI phase data for brain function analysis. New methods: The fMRI phase data taken from 100 subjects are preprocessed using standard SPM approaches. Group independent component analysis (ICA) is applied to the magnitude and phase data separately. We then compare the spatial patterns for both magnitude and phase data using an empirical spatial smoothing procedure. We also evaluate the magnitude and phase functional network connectivity (FC) matrices. Results: We observed the positive/negative correlation-balanced functional connectivity in phase data, which is distinct from the positive correlation prevalence in magnitude data. The phase FC (pFC) structure is quite different from the magnitude FC (mFC) in functional clusters (on-diagonal blocks or cliques) and inter-cluster couplings (off-diagonal blocks). Comparison with existing: Methods since both the magnitude and phase data of the fMRI signals are generated from the same magnetic source, either can be useful for brain function analysis from different perspective (per different measurements). Herein, we report on making use of resting-state fMRI phase data for brain functional analysis in comparison with magnitude data. This exploration in phase fMRI may provide a new arena for more comprehensive brain function analysis. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:299 / 309
页数:11
相关论文
共 36 条
[1]   Group-ICA model order highlights patterns of functional brain connectivity [J].
Abou Elseoud, Ahmed ;
Littow, Hard ;
Remes, Jukka ;
Starack, Tuomo ;
Nikkinen, Juha ;
Nissila, Juuso ;
Timonen, Markku ;
Tervonen, Osmo ;
Kiviniemi, Vesa .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[2]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[3]   A baseline for the multivariate comparison of resting-state networks [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Damaraju, Eswar ;
Gruner, William ;
Segall, Judith M. ;
Silva, Rogers F. ;
Havlicek, Martin ;
Rachakonda, Srinivas ;
Fries, Jill ;
Kalyanam, Ravi ;
Michael, Andrew M. ;
Caprihan, Arvind ;
Turner, Jessica A. ;
Eichele, Tom ;
Adelsheim, Steven ;
Bryan, Angela D. ;
Bustillo, Juan ;
Clark, Vincent P. ;
Ewing, Sarah W. Feldstein ;
Filbey, Francesca ;
Ford, Corey C. ;
Hutchison, Kent ;
Jung, Rex E. ;
Kiehl, Kent A. ;
Kodituwakku, Piyadasa ;
Komesu, Yuko M. ;
Mayer, Andrew R. ;
Pearlson, Godfrey D. ;
Phillips, John P. ;
Sadek, Joseph R. ;
Stevens, Michael ;
Teuscher, Ursina ;
Thoma, Robert J. ;
Calhoun, Vince D. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[4]   A computational model of information processing in the frontal cortex and basal ganglia [J].
Amos, A .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2000, 12 (03) :505-519
[5]  
Arja SK., 2009, NEUROIMAGE, V59, P3748, DOI DOI 10.1016/J.NEUR0IMAGE.2009.10.087
[6]   Modelling with independent components [J].
Beckmann, Christian F. .
NEUROIMAGE, 2012, 62 (02) :891-901
[7]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[8]   The physics of functional magnetic resonance imaging (fMRI) [J].
Buxton, Richard B. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (09)
[9]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[10]   Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery [J].
Calhoun, Vince D. ;
Adali, Tülay .
IEEE Reviews in Biomedical Engineering, 2012, 5 :60-73