Tensor Lagrangians, Lagrangians Equivalent to the Hamilton-Jacobi Equation and Relativistic Dynamics

被引:1
作者
Gersten, Alexander [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
关键词
Scalar Lagrangians; Tensor Lagrangians; Hamilton-Jacobi equation; Relativistic dynamics; ELECTROMAGNETIC-FIELD; VECTOR;
D O I
10.1007/s10701-009-9352-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We deal with Lagrangians which are not the standard scalar ones. We present a short review of tensor Lagrangians, which generate massless free fields and the Dirac field, as well as vector and pseudovector Lagrangians for the electric and magnetic fields of Maxwell's equations with sources. We introduce and analyse Lagrangians which are equivalent to the Hamilton-Jacobi equation and recast them to relativistic equations.
引用
收藏
页码:88 / 98
页数:11
相关论文
共 50 条
[41]   On initial value and terminal value problems for Hamilton-Jacobi equation [J].
Melikyan, Arik ;
Akhmetzhanov, Andrei ;
Hovakirayan, Naira .
SYSTEMS & CONTROL LETTERS, 2007, 56 (11-12) :714-721
[42]   Mapping of solutions of the Hamilton-Jacobi equation by an arbitrary canonical transformation [J].
Torres del Castillo, G. F. ;
Cruz Dominguez, H. H. ;
de Yta Hernandez, A. ;
Herrera Flores, J. E. ;
Sierra Martinez, A. .
REVISTA MEXICANA DE FISICA, 2014, 60 (04) :301-304
[43]   A new proof of indefinite propagation of singularities for a Hamilton-Jacobi equation [J].
Stromberg, Thomas .
JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (04) :895-903
[44]   WENO scheme with new smoothness indicator for Hamilton-Jacobi equation [J].
Huang, Cong .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 :21-32
[45]   On the connection of the Hamilton-Jacobi equation with some systems of quasilinear equations [J].
Rozanova, O. S. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (02) :206-219
[46]   On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion [J].
Silvestre, Luis .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :2020-2039
[47]   Initial Trace of Solutions of Hamilton-Jacobi Parabolic Equation with Absorption [J].
Bidaut-Veron, Marie-Francoise ;
Nguyen Anh Dao .
ADVANCED NONLINEAR STUDIES, 2015, 15 (04) :889-921
[48]   Hamilton-Jacobi equation for fermions interacting nonminimally with electromagnetic field [J].
V. I. Denisov ;
I. P. Denisova ;
I. V. Krivchenkov .
Doklady Physics, 2003, 48 :325-327
[49]   Hamilton-Jacobi equation for fermions interacting nonminimally with electromagnetic field [J].
Denisov, VI ;
Denisova, IP ;
Krivchenkov, IV .
DOKLADY PHYSICS, 2003, 48 (07) :325-327
[50]   FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION [J].
Jumarie, Guy .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2007, 23 (1-2) :215-228