Tensor Lagrangians, Lagrangians Equivalent to the Hamilton-Jacobi Equation and Relativistic Dynamics

被引:1
作者
Gersten, Alexander [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
关键词
Scalar Lagrangians; Tensor Lagrangians; Hamilton-Jacobi equation; Relativistic dynamics; ELECTROMAGNETIC-FIELD; VECTOR;
D O I
10.1007/s10701-009-9352-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We deal with Lagrangians which are not the standard scalar ones. We present a short review of tensor Lagrangians, which generate massless free fields and the Dirac field, as well as vector and pseudovector Lagrangians for the electric and magnetic fields of Maxwell's equations with sources. We introduce and analyse Lagrangians which are equivalent to the Hamilton-Jacobi equation and recast them to relativistic equations.
引用
收藏
页码:88 / 98
页数:11
相关论文
共 50 条
[21]   Group analysis of a Hamilton-Jacobi type equation [J].
Lobo, Jervin Zen .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (01) :51-66
[22]   On the Hamilton-Jacobi equation in the framework of generalized functions [J].
Fernandez, Roseli .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) :487-502
[23]   Approximation of a Multivalued Solution of the Hamilton-Jacobi Equation [J].
Kolpakova, E. A. .
MATHEMATICAL NOTES, 2020, 108 (1-2) :77-86
[24]   The Dual Hamilton-Jacobi Equation and the Poincaré Inequality [J].
He, Rigao ;
Wang, Wei ;
Fang, Jianglin ;
Li, Yuanlin .
MATHEMATICS, 2024, 12 (24)
[25]   THE HAMILTON-JACOBI EQUATION, INTEGRABILITY, AND NONHOLONOMIC SYSTEMS [J].
Bates, Larry M. ;
Fasso, Francesco ;
Sansonetto, Nicola .
JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (04) :441-449
[26]   Boundary singularities and characteristics of Hamilton-Jacobi equation [J].
Melikyan, A. ;
Olsder, G. J. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (01) :77-99
[27]   Solutions of the Schrodinger equation given by solutions of the Hamilton-Jacobi equation [J].
Torres del Castillo, G. F. ;
Sosa Sanchez, C. .
REVISTA MEXICANA DE FISICA, 2016, 62 (06) :534-537
[28]   Complete solutions of the Hamilton-Jacobi equation and the envelope method [J].
Torres del Castillo, G. F. ;
Anaya Gonzalez, G. S. .
REVISTA MEXICANA DE FISICA, 2014, 60 (06) :414-418
[29]   An approximation scheme for a Hamilton-Jacobi equation defined on a network [J].
Camilli, Fabio ;
Festa, Adriano ;
Schieborn, Dirk .
APPLIED NUMERICAL MATHEMATICS, 2013, 73 :33-47
[30]   Canonical Equations for the Generalized Hamilton-Jacobi Equation in DGWITL [J].
Ciletti, M. D. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 13 (03) :262-274