Tensor Lagrangians, Lagrangians Equivalent to the Hamilton-Jacobi Equation and Relativistic Dynamics

被引:1
|
作者
Gersten, Alexander [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
关键词
Scalar Lagrangians; Tensor Lagrangians; Hamilton-Jacobi equation; Relativistic dynamics; ELECTROMAGNETIC-FIELD; VECTOR;
D O I
10.1007/s10701-009-9352-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We deal with Lagrangians which are not the standard scalar ones. We present a short review of tensor Lagrangians, which generate massless free fields and the Dirac field, as well as vector and pseudovector Lagrangians for the electric and magnetic fields of Maxwell's equations with sources. We introduce and analyse Lagrangians which are equivalent to the Hamilton-Jacobi equation and recast them to relativistic equations.
引用
收藏
页码:88 / 98
页数:11
相关论文
共 50 条
  • [1] Tensor Lagrangians, Lagrangians Equivalent to the Hamilton-Jacobi Equation and Relativistic Dynamics
    Alexander Gersten
    Foundations of Physics, 2011, 41 : 88 - 98
  • [2] Resurgence in a Hamilton-Jacobi equation
    Olivé, C
    Sauzin, D
    Seara, TM
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (04) : 1185 - +
  • [3] THE STOCHASTIC HAMILTON-JACOBI EQUATION
    Lazaro-Cami, Joan-Andreu
    Ortega, Juan-Pablo
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (03) : 295 - 315
  • [4] Schrodinger and the Hamilton-Jacobi equation
    Chauveheid, J
    Vacanti, FX
    PHYSICS ESSAYS, 2002, 15 (01) : 5 - 10
  • [5] The Hamilton-Jacobi Analysis of Powers of Singular Lagrangians: A Connection Between the Modified Schrodinger and the Navier-Stokes Equations
    El-Nabulsi, Rami Ahmad
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (03) : 583 - 608
  • [6] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [7] KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    Marrero, Juan C.
    Munoz-Lecanda, Miguel C.
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03) : 207 - 237
  • [8] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622
  • [9] Physical solutions of the Hamilton-Jacobi equation
    Anantharaman, N
    Iturriaga, R
    Padilla, P
    Sánchez-Morgado, H
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2005, 5 (03): : 513 - 528
  • [10] NONHOLONOMIC HAMILTON-JACOBI EQUATION AND INTEGRABILITY
    Ohsawa, Tomoki
    Bloch, Anthony M.
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (04) : 461 - 481