Application of PEO75PPO30PEO75 stabilised polymeric micelles for improved corrosion resistance of composite zinc coatings

被引:3
作者
Boshkov, N. [1 ]
Boshkova, N. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Phys Chem, Acad G Bonchev Bl 11, BU-1113 Sofia, Bulgaria
来源
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING | 2017年 / 95卷 / 06期
关键词
Zn composites; Corrosion; Stabilised polymeric micelles; Cyclic polarisation; XRD; Polarisation resistance; NANOCOMPOSITE COATINGS; ELECTRODEPOSITION; TEXTURE; ZN; MORPHOLOGY; BEHAVIOR; NANOPARTICLES; SURFACTANTS; PARTICLES; STEEL;
D O I
10.1080/00202967.2017.1342460
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The influence of stabilised polymeric micelles (SPM) on the structure, corrosion properties and durability of electrodeposited composite zinc coatings is presented and discussed. The core-shell-type SPM used are based on poly-propylene oxide (core) and poly-ethylene oxide (shell). The deposition and dissolution processes of zinc in the presence or absence of SPM have been investigated by the cyclic polarisation method. The corrosion behaviour and protective ability of the composite coatings have been evaluated in a model corrosion medium of 3% NaCl solution by means of polarisation resistance measurements. The changes in the zinc matrix as a result of the embedded SPM were investigated by an X-ray diffraction method.
引用
收藏
页码:316 / 320
页数:5
相关论文
共 29 条
[1]  
[Anonymous], THESIS
[2]   On texture, corrosion resistance and morphology of hot-dip galvanized zinc coatings [J].
Asgari, H. ;
Toroghinejad, M. R. ;
Golozar, M. A. .
APPLIED SURFACE SCIENCE, 2007, 253 (16) :6769-6777
[3]   Corrosion behavior and protective ability of Zn and Zn-Co electrodeposits with embedded polymeric nanoparticles [J].
Boshkov, N. ;
Tsvetkova, N. ;
Petrov, P. ;
Koleva, D. ;
Petrov, K. ;
Avdeev, G. ;
Tsvetanov, Ch. ;
Raichevsky, G. ;
Raicheff, R. .
APPLIED SURFACE SCIENCE, 2008, 254 (17) :5618-5625
[4]  
Drasnar P., 2010, P INT C INN TECHN PR
[5]   Structural and electrochemical characterization of Zn-TiO2 and Zn-WO3 nanocomposite coatings electrodeposited on St 37 steel [J].
Erten, Umran ;
Unal, H. Ibrahim ;
Zor, Sibel ;
Atapek, S. Hakan .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2015, 45 (09) :991-1003
[6]   Pulsed electrodeposition of Zn in the presence of surfactants [J].
Gomes, A ;
Pereira, MID .
ELECTROCHIMICA ACTA, 2006, 51 (07) :1342-1350
[7]   Corrosion performance of composite galvanic coatings with variable concentration of polymeric nano-aggregates and/or Cr(III) conversion layers [J].
Koleva, D. A. ;
Taheri, P. ;
Tsvetkova, N. ;
Boshkov, N. ;
van Breugel, K. ;
de Wit, J. H. W. ;
Mol, J. M. C. .
HIGH RESOLUTION CHARACTERIZATION OF CORROSION PROCESSES 2, 2011, 33 (35) :85-92
[8]   Application of PEO113-b-PS218 nano-aggregates for improved protective characteristics of composite zinc coatings in chloride-containing environment [J].
Koleva, D. A. ;
Boshkov, N. ;
Bachvarov, V. ;
Zhan, H. ;
de Wit, J. H. W. ;
van Breugel, K. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (23) :3760-3772
[9]   Effect of surfactants on co-deposition of B4C nanoparticles in Zn matrix by electrodeposition and its corrosion behavior [J].
Kumar, C. M. Praveen ;
Venkatesha, T. V. ;
Chandrappa, K. G. .
SURFACE & COATINGS TECHNOLOGY, 2012, 206 (8-9) :2249-2257
[10]   Influence of the electrodeposition current regime on the corrosion resistance of Zn-CeO2 nanocomposite coatings [J].
Nemes, Patrick Ioan ;
Lekka, Maria ;
Fedrizzi, Lorenzo ;
Muresan, Liana Maria .
SURFACE & COATINGS TECHNOLOGY, 2014, 252 :102-107