Metabolism, HDACs, and HDAC Inhibitors: A Systems Biology Perspective

被引:43
作者
King, Jacob [1 ]
Patel, Maya [1 ]
Chandrasekaran, Sriram [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Program Chem Biol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Ctr Bioinformat & Computat Med, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Sch Med, Rogel Canc Ctr, Ann Arbor, MI 48109 USA
关键词
epigenome; gene regulation; histone acetylation; histone deacetylases; proteomics; transcriptomics; metabolomics; HISTONE DEACETYLASE INHIBITORS; CYCLIC TETRAPEPTIDE; MOLECULAR-MECHANISMS; CANCER; ACETYLATION; EPIGENETICS; TRAPOXIN; MAP;
D O I
10.3390/metabo11110792
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histone deacetylases (HDACs) are epigenetic enzymes that play a central role in gene regulation and are sensitive to the metabolic state of the cell. The cross talk between metabolism and histone acetylation impacts numerous biological processes including development and immune function. HDAC inhibitors are being explored for treating cancers, viral infections, inflammation, neurodegenerative diseases, and metabolic disorders. However, how HDAC inhibitors impact cellular metabolism and how metabolism influences their potency is unclear. Discussed herein are recent applications and future potential of systems biology methods such as high throughput drug screens, cancer cell line profiling, single cell sequencing, proteomics, metabolomics, and computational modeling to uncover the interplay between metabolism, HDACs, and HDAC inhibitors. The synthesis of new systems technologies can ultimately help identify epigenomic and metabolic biomarkers for patient stratification and the design of effective therapeutics.
引用
收藏
页数:16
相关论文
共 69 条
[1]   Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes [J].
Abelin, Jennifer G. ;
Patel, Jinal ;
Lu, Xiaodong ;
Feeney, Caitlin M. ;
Fagbami, Lola ;
Creech, Amanda L. ;
Hu, Roger ;
Lam, Daniel ;
Davison, Desiree ;
Pino, Lindsay ;
Qiao, Jana W. ;
Kuhn, Eric ;
Officer, Adam ;
Li, Jianxue ;
Abbatiello, Susan ;
Subramanian, Aravind ;
Sidman, Richard ;
Snyder, Evan ;
Carr, Steven A. ;
Jaffe, Jacob D. .
MOLECULAR & CELLULAR PROTEOMICS, 2016, 15 (05) :1622-1641
[2]   Histone deacetylase inhibition results in a common metabolic profile associated with HT29 differentiation [J].
Alcarraz-Vizan, Gema ;
Boren, Joan ;
Lee, Wai-Nang Paul ;
Cascante, Marta .
METABOLOMICS, 2010, 6 (02) :229-237
[3]   Energy Metabolism in H460 Lung Cancer Cells: Effects of Histone Deacetylase Inhibitors [J].
Amoedo, Nivea Dias ;
Rodrigues, Mariana Figueiredo ;
Pezzuto, Paula ;
Galina, Antonio ;
da Costa, Rodrigo Madeiro ;
Lacerda de Almeida, Fabio Ceneviva ;
El-Bacha, Tatiana ;
Rumjanek, Franklin David .
PLOS ONE, 2011, 6 (07)
[4]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[5]   Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2 [J].
Bheda, Poonam ;
Swatkoski, Stephen ;
Fiedler, Katherine L. ;
Boeke, Jef D. ;
Cotter, Robert J. ;
Wolberger, Cynthia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (16) :E916-E925
[6]   Quantitative Profiling of Lysine Acetylation Reveals Dynamic Crosstalk between Receptor Tyrosine Kinases and Lysine Acetylation [J].
Bryson, Bryan D. ;
White, Forest M. .
PLOS ONE, 2015, 10 (05)
[7]   Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer [J].
Bultman, Scott J. .
MOLECULAR NUTRITION & FOOD RESEARCH, 2017, 61 (01)
[8]   The epigenetic effects of butyrate: potential therapeutic implications for clinical practice [J].
Canani, Roberto Berni ;
Di Costanzo, Margherita ;
Leone, Ludovica .
CLINICAL EPIGENETICS, 2012, 4
[9]   The application of histone deacetylases inhibitors in glioblastoma [J].
Chen, Rui ;
Zhang, Mengxian ;
Zhou, Yangmei ;
Guo, Wenjing ;
Yi, Ming ;
Zhang, Ziyan ;
Ding, Yanpeng ;
Wang, Yali .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2020, 39 (01)
[10]   New Insights into the Connection Between Histone Deacetylases, Cell Metabolism, and Cancer [J].
Chiaradonna, Ferdinando ;
Cirulli, Claudia ;
Palorini, Roberta ;
Votta, Giuseppina ;
Alberghina, Lilia .
ANTIOXIDANTS & REDOX SIGNALING, 2015, 23 (01) :30-50