Porous Fe, N co-doped carbon with high electrocatalytic oxygen reduction reaction performance in Zn-air battery

被引:22
|
作者
Wang, Mengyang [1 ]
Cao, Zuolin [1 ]
Li, Longyu [1 ]
Ren, Shijie [1 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Conjugated microporous polymer; Porous carbon; Bipyridine; Fe; N co-doping; Oxygen reduction reaction; ROOM-TEMPERATURE; EFFICIENT; GRAPHDIYNE; CATALYSTS; FRAMEWORKS; NANOSHEETS; GRAPHENE; SPINELS;
D O I
10.1016/j.carbon.2022.08.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-Pt electrocatalysts for oxygen reduction reactions (ORR) have been developed using metal and nitrogen co -doped carbon electrocatalysts. However, challenges remain regarding the porosity of the catalyst, distribution of active sites, and the easy aggregation of the metal components. Herein, we report a bottom-up preparation strategy to obtain a porous ethynyl-linked conjugated microporous polymer (CMP) precursor containing triazine units and bipyridine, ensuring high N content and coordination with Fe3+. The Fe doped CMP is then carbon-ization into a Fe, N co-doped nanoporous carbon material (BPCMP-Fe-800), which can be taken as the elec-trocatalyst in ORR. BPCMP-Fe-800 catalyst exhibits electrocatalytic performance dominated by 4(e)(-) transfer mechanism with the onset potential of 0.97 V, half-wave potential of 0.85 V, and higher kinetic current density of 11.3 mA cm(-2) (0.8 V). In addition, when applied as cathode electrocatalyst in zinc-air batteries, BPCMP-Fe-800 displays more competitive power density (179.5 mW cm(-2)) and specific capacity (790.5 mAh g(-1)) compared with Pt/C. Our study demonstrates a general and facile approach for porous Fe, N co-doped carbon with the potential as alternatives to Pt catalysts for efficient ORR catalytic performances and provides new insights of multi-atom catalysts for other energy conversion related catalytic reactions.
引用
收藏
页码:337 / 346
页数:10
相关论文
共 50 条
  • [1] Self-sacrificial template synthesis of Fe, N co-doped porous carbon as efficient oxygen reduction electrocatalysts towards Zn-air battery application
    Yang, Tianfang
    Chen, Ye
    Liu, Yang
    Liu, Xupo
    Gao, Shuyan
    CHINESE CHEMICAL LETTERS, 2022, 33 (04) : 2171 - 2177
  • [2] Ultra dispersed Co supported on nitrogen-doped carbon: An efficient electrocatalyst for oxygen reduction reaction and Zn-air battery
    Zhang, Shuai
    Shang, Ningzhao
    Gao, Shutao
    Meng, Tao
    Wang, Zhi
    Gao, Yongjun
    Wang, Chun
    CHEMICAL ENGINEERING SCIENCE, 2021, 234
  • [3] Boosting Zn-air battery performance: Fe single-atom anchored on F, N co-doped carbon nanosheets for efficient oxygen reduction
    Alhakemy, Ahmed Zaki
    Wang, Genxiang
    Chen, Kai
    Hassan, Ahmed E.
    Wen, Zhenhai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [4] Facile synthesis of ZnS decorated N, S co-doped carbon polyhedron as high efficiency oxygen reduction reaction catalyst for Zn-air battery
    Li, Yanqiang
    Wang, Chao
    Cui, Ming
    Chen, Siru
    Gao, Liguo
    Liu, Anmin
    Ma, Tingli
    APPLIED SURFACE SCIENCE, 2020, 509 (509)
  • [5] Mesopore-dominated N, S co-doped carbon as advanced oxygen reduction reaction electrocatalysts for Zn-air battery
    Wang, Shouting
    Chen, Ye
    Zhao, Yaling
    Wei, Gangya
    Li, Dongliang
    Liu, Xupo
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (41) : 19431 - 19446
  • [6] Electrocatalytic Performance of Fe-N Encapsulated in Hollowly Mesoporous Carbon Microspheres for Oxygen Reduction Reaction and Zn-Air Battery
    Qin, Fangfang
    Wang, Jiashi
    Liu, Yanzhen
    Li, Na
    Xu, Feifei
    Shi, Wen
    Li, Huiyu
    Shen, Wenzhong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (21) : 7031 - 7040
  • [7] Facile Fabrication of Nitrogen, Phosphorus and Silicon Co-Doped Porous Carbon as an Efficient Oxygen Reduction Catalyst for Primary Zn-Air Battery
    Huang, Renxing
    Lei, Ying
    Zhang, Dandan
    Xie, Huaming
    Liu, Xingyong
    Wang, Honghui
    NANO, 2019, 14 (09)
  • [8] Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery
    Zhang, Xibo
    Han, Xiao
    Jiang, Zhe
    Xu, Jie
    Chen, Luning
    Xue, Yakun
    Nie, Anmin
    Xie, Zhaoxiong
    Kuang, Qin
    Zheng, Lansun
    NANO ENERGY, 2020, 71
  • [9] A unique nanocomposite with FeCo nanoalloy anchored on S, N co-doped carbonaceous matrix for high bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalytic property in Zn-air battery
    Liang, Xiao
    Xiao, Hong
    Zhang, Tengfei
    Zhang, Fanchao
    Gao, Qiuming
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 630 : 170 - 181
  • [10] Electrocatalytic Oxygen Reduction Reaction by the Pd/Fe-N-C Catalyst and Application in a Zn-Air Battery
    Chen, Jiabao
    Wang, Zhongqing
    Yang, Chunxiang
    Zou, Guangchao
    Liu, Shuhua
    Sun, Zhiran
    Wang, Lei
    Li, Rui
    Qu, Konggang
    Kang, Wenjun
    Li, Haibo
    CATALYSTS, 2022, 12 (12)