共 50 条
Porous Fe, N co-doped carbon with high electrocatalytic oxygen reduction reaction performance in Zn-air battery
被引:22
|作者:
Wang, Mengyang
[1
]
Cao, Zuolin
[1
]
Li, Longyu
[1
]
Ren, Shijie
[1
]
机构:
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Conjugated microporous polymer;
Porous carbon;
Bipyridine;
Fe;
N co-doping;
Oxygen reduction reaction;
ROOM-TEMPERATURE;
EFFICIENT;
GRAPHDIYNE;
CATALYSTS;
FRAMEWORKS;
NANOSHEETS;
GRAPHENE;
SPINELS;
D O I:
10.1016/j.carbon.2022.08.068
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Non-Pt electrocatalysts for oxygen reduction reactions (ORR) have been developed using metal and nitrogen co -doped carbon electrocatalysts. However, challenges remain regarding the porosity of the catalyst, distribution of active sites, and the easy aggregation of the metal components. Herein, we report a bottom-up preparation strategy to obtain a porous ethynyl-linked conjugated microporous polymer (CMP) precursor containing triazine units and bipyridine, ensuring high N content and coordination with Fe3+. The Fe doped CMP is then carbon-ization into a Fe, N co-doped nanoporous carbon material (BPCMP-Fe-800), which can be taken as the elec-trocatalyst in ORR. BPCMP-Fe-800 catalyst exhibits electrocatalytic performance dominated by 4(e)(-) transfer mechanism with the onset potential of 0.97 V, half-wave potential of 0.85 V, and higher kinetic current density of 11.3 mA cm(-2) (0.8 V). In addition, when applied as cathode electrocatalyst in zinc-air batteries, BPCMP-Fe-800 displays more competitive power density (179.5 mW cm(-2)) and specific capacity (790.5 mAh g(-1)) compared with Pt/C. Our study demonstrates a general and facile approach for porous Fe, N co-doped carbon with the potential as alternatives to Pt catalysts for efficient ORR catalytic performances and provides new insights of multi-atom catalysts for other energy conversion related catalytic reactions.
引用
收藏
页码:337 / 346
页数:10
相关论文