Fractional Sobolev-Poincare Inequalities in Irregular Domains

被引:3
作者
Guo, Chang-Yu [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Fribourg, Dept Math, Chemin Musee 23, CH-1700 Fribourg, Switzerland
关键词
Fractional Sobolev-Poincare inequality; s-John domain; Quasihyperbolic boundary condition; QUASIHYPERBOLIC BOUNDARY-CONDITIONS; JOHN;
D O I
10.1007/s11401-017-1099-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of fractional (q,p)-Sobolev-Poincare inequalities in irregular domains. In particular, the author establishes (essentially) sharp fractional (q, p)-Sobolev-Poincare inequalities in 8-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional (q,p)-Sobolev-Poincare inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P., Sobolev-Poincare implies John, Math. Res. Lett., 2(5), 1995, 577-593] is also pointed out.
引用
收藏
页码:839 / 856
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 1996, FUNDAMENTAL PRINCIPL, V314
[2]  
Buckley S, 1995, MATH RES LETT, V2, P577
[3]  
Dyda B, 2015, ARK MAT
[4]   UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC [J].
GEHRING, FW ;
OSGOOD, BG .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :50-74
[5]   QUASI-CONFORMALLY HOMOGENEOUS DOMAINS [J].
GEHRING, FW ;
PALKA, BP .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :172-199
[6]   Generalized John disks [J].
Guo, Chang-Yu ;
Koskela, Pekka .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (02) :349-361
[7]   Isoperimetric inequalities and imbedding theorems in irregular domains [J].
Hajlasz, P ;
Koskela, P .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :425-450
[8]  
Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
[9]   On fractional Poincar, inequalities [J].
Hurri-Syrjanen, Ritva ;
Vahakangas, Antti V. .
JOURNAL D ANALYSE MATHEMATIQUE, 2013, 120 :85-104
[10]   A note on "Quasihyperbolic boundary conditions and Poincar, domains" [J].
Jiang, Renjin ;
Kauranen, Aapo .
MATHEMATISCHE ANNALEN, 2013, 357 (03) :1199-1204