Advances on gradient scaffolds for osteochondral tissue engineering

被引:16
作者
Oliveira, Joaquim M. [1 ,2 ]
Ribeiro, Viviana P. [1 ,2 ]
Reis, Rui L. [1 ,2 ]
机构
[1] Univ Minho, 3Bs Res Grp, 3Bs Res Inst Biomat Biodegradables & Biomimet, Avepk Parque Ciencia & Tecnol,Headquarters Europe, P-4805017 Barco, Guimaraes, Portugal
[2] ICVS 3BsPT Govt Associate Lab, Braga, Portugal
来源
PROGRESS IN BIOMEDICAL ENGINEERING | 2021年 / 3卷 / 03期
基金
欧盟地平线“2020”;
关键词
biomaterials; gradients; osteochondral; scaffolds; stem cells; tissue engineering; MESENCHYMAL STEM-CELLS; IN-VITRO; ARTICULAR-CARTILAGE; CHONDROGENIC DIFFERENTIATION; SILK FIBROIN; REPAIR; VIVO; NANOPARTICLES; CONSTRUCTS; HYDROGELS;
D O I
10.1088/2516-1091/abfc2c
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The osteochondral (OC) tissue is one of the most hierarchical and complex structures known and it is composed by two main compartments of hyaline articular cartilage and subchondral bone. It exhibits unique cellular and molecular transitions from the cartilage to the bone layers. OC diseases such as osteoarthritis and traumatic lesions may affect the articular cartilage, calcified cartilage (interface region) and subchondral bone, thus posing great regenerative challenges. Tissue engineering (TE) principles can offer novel technologies and combinatorial approaches that can better recapitulate the biological OC challenges and complexity in terms of biochemical, mechanical, structural and metabolic gradients, and ultimately can provide biofunctional 3D scaffolds with high reproducibility, versatility and adaptability to each patient's needs, as it occurs in OC tissue defects. The recent reports and future directions dealing with gradient scaffolds for OCTE strategies are overviewed herein. A special focus on clinical translation/regulatory approval is given.
引用
收藏
页数:21
相关论文
共 141 条
[31]   Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size [J].
Di Luca, Andrea ;
Szlazak, Karol ;
Lorenzo-Moldero, Ivan ;
Ghebes, Corina A. ;
Lepedda, Antonio ;
Swieszkowski, Wojcech ;
Van Blitterswijk, Clemens ;
Moroni, Lorenzo .
ACTA BIOMATERIALIA, 2016, 36 :210-219
[32]   Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds [J].
Di Luca, Andrea ;
Ostrowska, Barbara ;
Lorenzo-Moldero, Ivan ;
Lepedda, Antonio ;
Swieszkowski, Wojcech ;
Van Blitterswijk, Clemens ;
Moroni, Lorenzo .
SCIENTIFIC REPORTS, 2016, 6
[33]   The Osteochondral Interface as a Gradient Tissue: From Development to the Fabrication of Gradient Scaffolds for Regenerative Medicine [J].
Di Luca, Andrea ;
Van Blitterswijk, Clemens ;
Moroni, Lorenzo .
BIRTH DEFECTS RESEARCH PART C-EMBRYO TODAY-REVIEWS, 2015, 105 (01) :34-52
[34]   Challenges in the translation and commercialization of cell therapies [J].
Dodson, Brittany P. ;
Levine, Aaron D. .
BMC BIOTECHNOLOGY, 2015, 15
[35]   Gradient scaffold with spatial growth factor profile for osteochondral interface engineering [J].
Dorcemus, Deborah L. ;
Kim, Hyun S. ;
Nukavarapu, Syam P. .
BIOMEDICAL MATERIALS, 2021, 16 (03)
[36]  
Elmashhady H.H., 2017, ELECTROSPINNING, V1, P87, DOI DOI 10.1515/ESP-2017-0005
[37]   The Basic Science of Articular Cartilage: Structure, Composition, and Function [J].
Fox, Alice J. Sophia ;
Bedi, Asheesh ;
Rodeo, Scott A. .
SPORTS HEALTH-A MULTIDISCIPLINARY APPROACH, 2009, 1 (06) :461-468
[38]   Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair [J].
Frassica, Michael T. ;
Grunlan, Melissa A. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (08) :4324-4336
[39]  
Galli S, 2019, MODERN PATHOL, V32
[40]   Direct 3D Printing of High Strength Biohybrid Gradient Hydrogel Scaffolds for Efficient Repair of Osteochondral Defect [J].
Gao, Fei ;
Xu, Ziyang ;
Liang, Qingfei ;
Liu, Bo ;
Li, Haofei ;
Wu, Yuanhao ;
Zhang, Yinyu ;
Lin, Zifeng ;
Wu, Mingming ;
Ruan, Changshun ;
Liu, Wenguang .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (13)